- User's request (disagreement in analytical and MC results)
- Reason of the disagreement (problem)
- Solution of the problem
- v.15.26.1 results
- Angular envelopes comparison
- Matrix envelope and Angular straggling contribution
- Visualization of Angular straggling contribution values in matrices
- How strong is the impact of angular straggling contribution at higher energy?

Reason of User's Request

- The code did not use properly the angular straggling contribution in ion optics in the case of transmission analytical solution
- LISE was taken into account the angular straggling contribution as product $(T_n = T_c \cdot F)$ of the current beam angle emittance (T_c) and the factor F, where F = Width($(T_c \cdot M) \otimes S$) / Width $(T_c \cdot M)$, where M is the global Angular magnification from target to this block, S is normal distribution, which sigma corresponds to the plane angular straggling value
- This disagreement could be observed due to simultaneous coincidence of several factors:
 - Light Z beam
 - o Low energy beam
 - o No target
 - Narrow initial angular emittance
 - o Heavy Z material in line
 - Material location in non-focal plane

- The Compound block (material, wedge) has got the optical matrix feature in the new version
- If the corresponding option has been set in the Preference dialog, LISE calculates the factor F as ratio F = Width(A \otimes S) / Width(A), where A is the current angular distribution in front of this material, and S is normal distribution, which sigma corresponds to the plane angular straggling value
- Then it is assumed F is angular magnification in the corresponding plane and being set to the local optical matrix (θ/θ, φ/φ)
- LISE recalculates global optical matrices starting this block
- All material matrices are set again be unitary after completion of ion transmission calculation
- The Last calculated material matrix angular magnification values are kept at material block area to retrieve in order to plot the matrix envelope or to show matrices in a window

v.15.26.1 results

X [mm]

Y [mm]

Angular envelopes comparison

[∞] ₩ICHIGAN STATE

S NSCI

Li 👐

😽 "Se

Cu 😽

MICHIGAN STATE

+ Te UNIVERSITY

Matrix envelope and Angular straggling contribution

YES

6

S NSCL

++

₩ Se

Visualization of Angular straggling contribution values in matrices

To optimize ion optics with taken into account the angular straggling contribution, the user should manually create a matrix after materials

6

++

😽 "Se

for example: ⁸²Se (250 MeV/u) \rightarrow ⁶⁰Ca, Preseparator wedge is AI 3mm^t

Tiny magnification is less than 2% in the case of ⁶⁰Ca

the magnification is only 0.5% for tritons due to the broad angular distribution after reaction. 5% magnification in the case of ⁷⁸Ni.