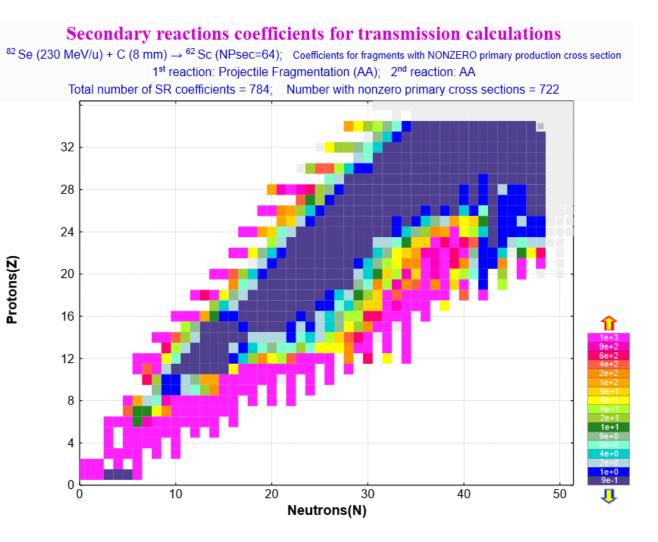


v.17.3 03/12/24


- Adding Abrasion-Ablation to Secondary reactions
- Optimization of Secondary Reaction calculations
- 4 "fast" AA calculation modes
- Fitting the ⁸²Se MSU cross-sections with AA
- Changing distribution names in plots
- Plot distribution copy-paste
- Slopes X_{dest}/X_{wedge} and E_{dest}/X_{wedge} in wedge position shift plots

- Fast AA mode is used in Secondary Reactions
- Secondary Reactions mechanism has been updated to use AA calculations
- Still time-consumed. Parallelization?
- Important to apply AA parameters correctly associated to region under investigation

- Interesting results, which could be use for explanation of the "evaporation corridor" in the case of U-beams with thick targets
- The ⁸²Se MSU cross-sections have been refitted with AA to produce these calculations. See text further.

$F1 \rightarrow F2$

Cross section of production F2 from F1 is calculated only once, and kept in memory using Qmap

This optimization is also sufficient with using EPAX models in Secondary reactions

```
typedef QMap<int, double> mapCS;
```

```
mapCS* vmpCS = new mapCS[Nglobal];
```

```
double CStemp;
int index_iff = calc_index(indexZ[iff],indexN[iff]);
bool exist = vmpCS[ib].contains(index_iff);
if(exist) CStemp = vmpCS[ib].value(index_iff);
else
{
    CStemp = epax.yield(indexZ[iff],indexZ[iff]+indexN[iff],EPAX_option,false);
    vmpCS[ib].insert(index_iff, CStemp);
    lev3a++;
  }
```

Additionally internal modifications

- TGauge was optimized for AA use
- LastZ value was revised for AA use in Secondary Reactions
- Additional fast AA modes have been created

Projectile fragmentation	
Fragment velocity Momentum distribution	$$^{48}\mbox{ Ca}\ (140.0\ \mbox{MeV/u})$ + Be $\rightarrow $^{42}\mbox{ S}$$ Cross section, Excitation energy and etc.
Prefragment and Evaporation options	Excitation energy for Abrasion-Ablation model
Cross Sections	
0 - Abrasion/Ablation v.6.5.1	•
	• or light charge partilces (H, He, Li) production cross sections
	or light charge partilces (H, He, Li) production cross sections
✓ Use O.T.'s manual corrections for	or light charge partilces (H, He, Li) production cross sections * use this mode only for heavy projectiles as Uranium, and for AA in Secondary Reactions
✓ Use O.T.'s manual corrections for Fast mode "FAST" mode for	* use this mode only for heavy projectiles as Uranium,

34 different AA settings have been used to fitting ⁸²Se MSU cross-sections

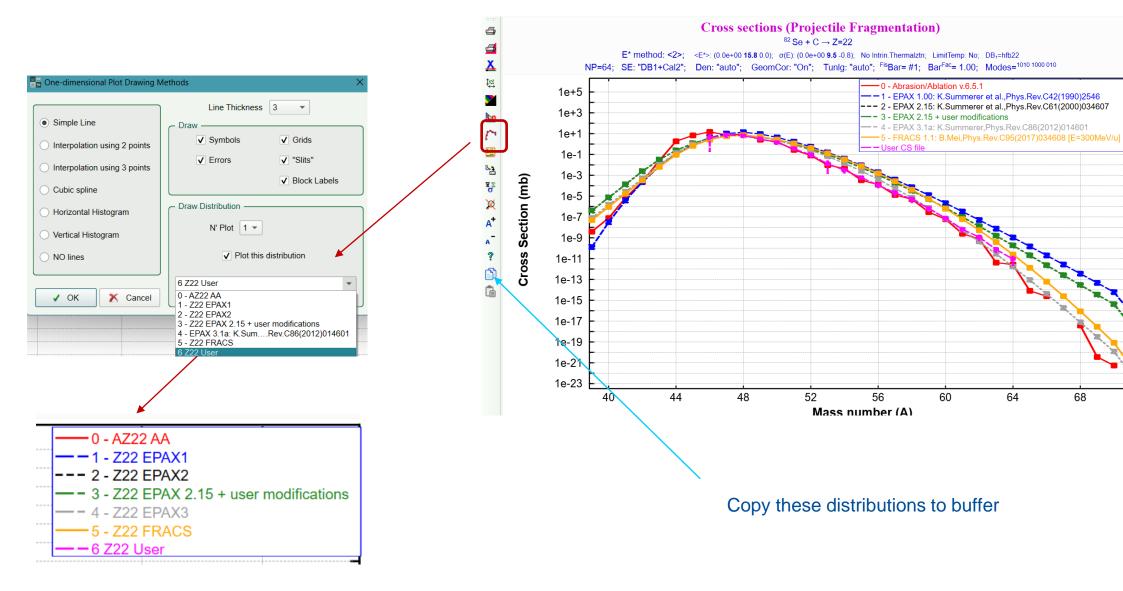
Last results

3 ² uay IIIS. new left bound, A>1 pair corrections, no2n	3 rd	day	fits: new left bound, A>1 pair corrections, no2n
---	-----------------	-----	--

1.	NP=64 down to Z=21	N=48	WS4_RBF	<u>4.89</u>
2.	NP=64 down to Z=21	N=48	WS4_RBF MeanT	224
3.	NP=64 down to Z=21	N=48	WS4_RBF LogNorm	2180
4.	NP=64 down to Z=21	N=48	WS4_RBF with 2n	11.92
5.	NP=64 down to Z=21	Z=22	WS4_RBF	10.75
6.	NP=64 down to Z=21	N=48	WS4_RBF Thermo	5.21
7.	NP=64 down to Z=21	N=48	HFB22	<u>4.49</u>
8.	NP=64 down to Z=18	N=48	WS4_RBF	<u>4.798</u>
9.	NP=64 down to Z=21	N=48	WS4_RBF fast	8.94
10	. NP=64 down to Z=18	N=48	WS4_RBF A>70 pair corrections	14.1
7a	. Like 7 but Z=18			<u>4.64</u>

7a mode: best results down to Z=18

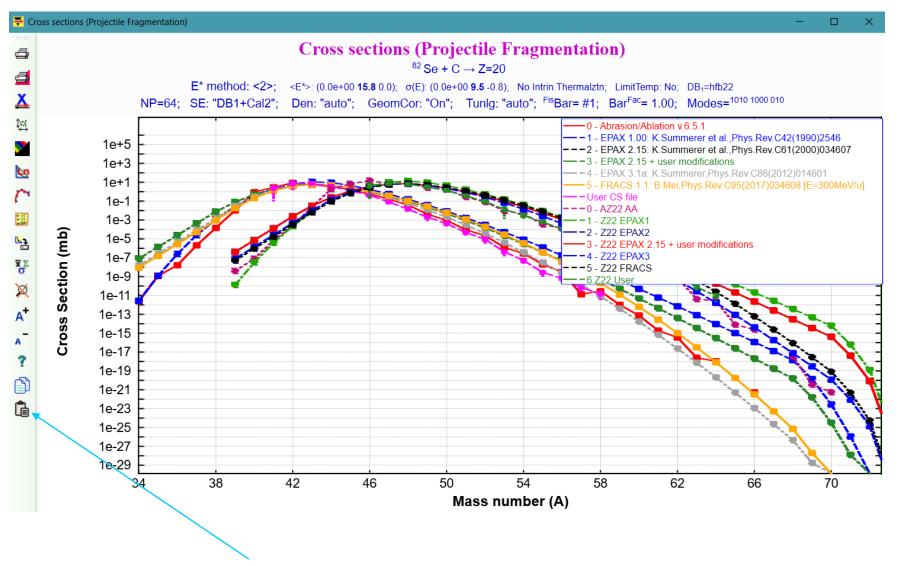
82Se (230.0 MeV/u) + C; **** Local line N = 48; Last Z=18
NP=64; SE: "DB1+Cal2"; Den: "auto"; GeomCor: "On";
Tunlg: "auto"; FisBar= #1; BarFac= 1.00; Modes=1010 1000 010
No Intrin.Thermalztn; LimitTemp: No; DB1="hfb22"; ParticleDistribution=Quality


N => Local: init=8 final=8; Total: init=233, final=233

TARGET VALUEs: Initial 572.368 and Final 4.63657 LISE++ reduced values

Parameters :	LeftBound	<	Initial	<	RightBound	Final
1. Energy #a1	+9.0e+00	<	+1.5902e+01	<	+3.0e+01	+1.5841e+01
2. Energy #a2	-2.0e+00	<	+1.9400e-02	<	+2.0e+00	+1.5763e-02
3. Sigma #a1	+3.0e+00	<	+9.4273e+00	<	+2.0e+01	+9.4954e+00
4. Sigma #a2	-2.0e+00	<	-7.0620e-01	<	+2.0e+00	-7.6994e-01
5. AA CS-factor	+5.0e-02	<	+6.5210e-01	<	+1.5e+00	+6.8603e-01

-		
Evaporation options	Deservedes	Settings of AUTO mode 🛛 🛛 🗙
Dimension of evaporation distributions [32] 64	Decay modes 1n 2n 1p 2p α d t ³ He Fission Breakup y	
Version of Cross-Section evaporation file brief		Effective Coulomb Barrier $B_{eff} = \frac{1.44 Z_1 Z_2}{dR + 1.22 (A_1^{1/3} + A_2^{1/3})} \qquad a2 = 1.20080e-01$
Correction dR for the deduced	protected mode 💿 💿 debugging mode	$B_{eff} = \frac{1}{dP + 1} \frac{1}{22} \left(\frac{4^{1/3}}{4^{1/3}} + \frac{4^{1/3}}{4^{1/3}} \right)$
effective Coulomb barrier in the TUNNELLING mode [fm]	C Mode — For "daughter" nuleus excitation energy distribution apply: –	a1 = 4.45590E-01
Fission Barrier	manual manual settings	$dR = a2 \cdot \left(A_x^{1/3}\right)^2 + a1 \cdot A_x^{1/3} + a0 \qquad a0 = -0.614$
BarFac = 1 🔅 settings	auto auto average energy of emitted light particle (fast)	where $A_x = \max(A_1, A_2)$ dR(A=65)= 3.119 fm
✓ Tunnelling for charge particle evaporation	State density Dissipative effects in fission Reduced dissipation use Krammers's factor coefficient "8"	Unbound nuclei
Take into account unbound nuclei	\bigcirc [B] - as [A] + pairing corrections (10 ²¹)/s	Take into account unbound nuclei with A < 300
Create cross-sections file	● [C] - as [B] + shell corrections ✓ use Gamma_f(t) as a Image: step function β = 1	
Create Parent-Daughter references file	Odd-Even Delta parameters	C State density
Use Ablation in Abrasion-Ablation calculations (for plots)	default The limiting temperature calculated T (A=050)= 8 8.0 Evaporation = 12 12 points for masses 50, 150, 250 T (A=150)= 5.9 5.9	Include pairing and shell corrections for nuclei with A > 1
✓ Avoid residual cross section for nuclei with T1/2 < 1ns	Fission = 14 14 Default values from Zi.Li & M.Liu, T (A=250)= 4.7 4.7	
📐 State density & T plots	Probability & Width plots PRC69, 034615 (2004), Fig.5 Diffuseness= 0.05 0.05	Make default



6

Let's copy distributions from previous Z=22 plot to Z=20 plot

Paste distributions to buffer to the current plot. Z22 distributions were copied to Z20 plot.

<mark>₂⁵u 🐺</mark> Michigan State

++

TeUNIVERSITY

Slopes X_{dest}/X_{wedge} and E_{dest}/X_{wedge} in wedge position shift plots

