




#### Version 9.10.207 from 11/17/2015



Link: Separator "EMMA" @ TRIUMF



0 1m

#### □ EMMA extended configuration

- Documentation
- EMMA files location
- Optics
- Optimization
- Angular Acceptance
- Momentum Acceptance
- Benchmarks
- □ Charge state selection
- □ LISE<sup>++</sup> analytical and MC envelopes
- **D** Reaction  $d(^{132}Sn,p)^{133}Sn$ 
  - Decreasing Angular Acceptance for better selection







### EMMA: A recoil mass spectrometer for ISAC-II at TRIUMF

Barry Davids<sup>a,\*</sup>, Cary N. Davids<sup>b</sup>

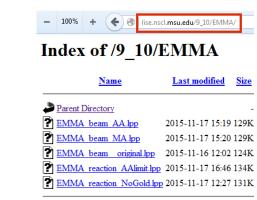
<sup>a</sup>TRIUMF, 4004 Wesbrook Mall, Vancouver BC, Canada V6T 2A3 <sup>b</sup>Physics Division, Argonne National Laboratory, Argonne IL 60439, USA

Received 13 September 2004; received in revised form 5 January 2005; accepted 7 January 2005 Available online 11 March 2005

# 2. The EMMA settings example and apertures kindly provided by Matt Williams (TRIUMF)

# LISE<sup>++</sup> package / files

| \LISE\files\examples\TRIUMF\*.*   |     |             |            |
|-----------------------------------|-----|-------------|------------|
| Name                              | Ext | Size        | ↓Date      |
| <u>€[.]</u>                       |     | <dir></dir> | 11/17/2015 |
| <b>F</b> EMMA_beam                | lpp | 133,012     | 11/17/2015 |
| EMMA_reaction                     | lpp | 137,443     | 11/17/2015 |
| e_DRAGON2000_reaction_2body       | lpp | 353,121     | 09/16/2015 |
| s_DRAGON2000_reaction_2body       | lpp | 55,413      | 09/16/2015 |
| 🔫 e_DRAGON2000_39Ca_beam          | lpp | 355,049     | 07/22/2015 |
| <pre>Fe_DRAGON2000_reaction</pre> | lpp | 357,464     | 07/22/2015 |
| s_DRAGON2000_reaction             | lpp | 55,647      | 07/22/2015 |


- $\rightarrow$  EMMA for the primary beam A=100,q=20+,E=180MeV
- $\rightarrow$  EMMA for the reaction <sup>132</sup>Sn(6MeV/u)+CD<sub>2</sub>(0.1 mg/cm<sup>2</sup>)..

### LISE<sup>++</sup> package / configurations

| \LISE\config\TRIUMF\*.* |     |             |            |
|-------------------------|-----|-------------|------------|
| Name                    | Ext | Size        | ↓Date      |
| <b>▲</b> []             |     | <dir></dir> | 11/17/2015 |
| F EMMA                  | lcn | 112,029     | 11/17/2015 |
| s_DRAGON2000            | lcn | 34,357      | 07/22/2015 |
| Fe_DRAGON2000           | lcn | 329,085     | 07/22/2015 |

 $\rightarrow$  EMMA configuration

## LISE<sup>++</sup> site / 9\_10/ EMMA



The next files been used for the analysis presented in this work

- $\rightarrow$  file to define Angular Acceptance
- $\rightarrow$  file to define Momentum Acceptance
- $\rightarrow$  file with "original" quad-values
- $\rightarrow$  the same as "EMMA\_reaction.lpp" with small X'-acceptance
- $\rightarrow$  the same as "EMMA\_reaction.lpp" without the gold degrader



| 🗧 Optics settin   | gs (fast editing | ))       | <u> </u>  |           | _               |               |              |                  |            |               |                   |            | ×  |
|-------------------|------------------|----------|-----------|-----------|-----------------|---------------|--------------|------------------|------------|---------------|-------------------|------------|----|
| Block             | Given Name       | Start(m) | Length(m) | B0(kG)/*U | Br(Tm)cor/*real | DriftM/*Angle | Rapp(cm)/*R( | Leff(m)/*Ldip(m) | 2 nd order | CalcMatr/*Z-Q | AngAcc,Apps,Slits | COSY   Fit | SE |
| 😰 = Dipole        | tuning           | 0.000    | 0.0001    | +3.2873   | * 0.9862        | * +0.0        | × 3.0000     | × 0.0000         |            | ×19           | HV                | -          | S  |
| d 🗖 drift         | Drift 1          | 0.000    | 0.2470    |           |                 | standard      |              |                  |            |               | HV                |            | е  |
| 🍳 🔷 <quad></quad> | Q1               | 0.247    | 0.1398    | +13.4745  | 0.9862          | QUAD          | 3.5000       | 0.1398           | yes        | 1 R           | HV                | -          | е  |
| d 🗖 drift         | drift Q12        | 0.387    | 0.0350    |           |                 | standard      |              |                  |            |               | HV                |            | е  |
| 🍳 🔷 <quad></quad> | Q2               | 0.422    | 0.2988    | -8.7698   | 0.9862          | QUAD          | 7.5000       | 0.2988           | yes        | 1 R           | HV                | -          | е  |
| d 🗖 drift         | drift Q2E        | 0.721    | 0.3723    |           |                 | standard      |              |                  |            |               | HV                | -          | е  |
| E==========       | ElecDip 1        | 1.093    | 1.7453    | *546.4kV  | 0.9862          | * +20.0       | × 5.0000     | * 1.7453         |            | * 19 R        | HV                |            | Е  |
| d 🗖 drift         | drift ED         | 2.838    | 1.2250    |           |                 | standard      |              |                  |            |               | HV                |            | е  |
| 📭 = Dipole        | DipoleA          | 4.063    | 0.3491    | -9.8619   | * 0.9862        | * -20.0       | × 1.0000     | * 0.3491         | yes        | * 19 R        |                   |            | Е  |
| S I _slits_       | dip slits        | 4.412    | 0.0000    |           |                 | SLITS         |              |                  |            |               | HV                |            | е  |
| 🍋 = Dipole        | DipoleB          | 4.412    | 0.3491    | -9.8619   | * 0.9862        | * -20.0       | * 1.0000     | * 0.3491         | yes        | * 19 R        |                   |            | Е  |
| d 🗖 drift         | drift DE         | 4.761    | 1.2225    |           |                 | standard      |              |                  |            |               | HV                |            | е  |
| E = ElecDip       | ElecDip 2        | 5.984    | 1.7453    | *546.4kV  | 0.9862          | * +20.0       | × 5.0000     | * 1.7453         |            | * 19 R        | HV                |            | Е  |
| d 🗖 drift         | drift EQ3        | 7.729    | 0.3649    |           |                 | standard      |              |                  |            |               | HV                | -          | е  |
| 🍳 🔷 <quad></quad> | Q3               | 8.094    | 0.2988    | -5.7122   | 0.9862          | QUAD          | 7.5000       | 0.2988           | yes        | 1 R           | HV                | fit - Q    | е  |
| d 🗖 drift         | drift Q34        | 8.393    | 0.0300    |           |                 | standard      |              |                  |            |               | HV                |            | е  |
| 🍳 🔷 <quad></quad> | Q4               | 8.423    | 0.4018    | +6.8799   | 0.9862          | QUAD          | 10.0000      | 0.4018           | yes        | 1 R           | - HV              | fit - Q    | е  |
| d 🗖 drift         | drift Q4FP       | 8.825    | 0.3076    |           |                 | standard      |              |                  |            |               | - HV              |            | е  |
| S I               | FP slits         | 9.132    | 0.0000    |           |                 | SLITS         |              |                  |            |               | HV                | -          | е  |
|                   |                  |          |           |           |                 |               |              |                  |            |               |                   |            |    |

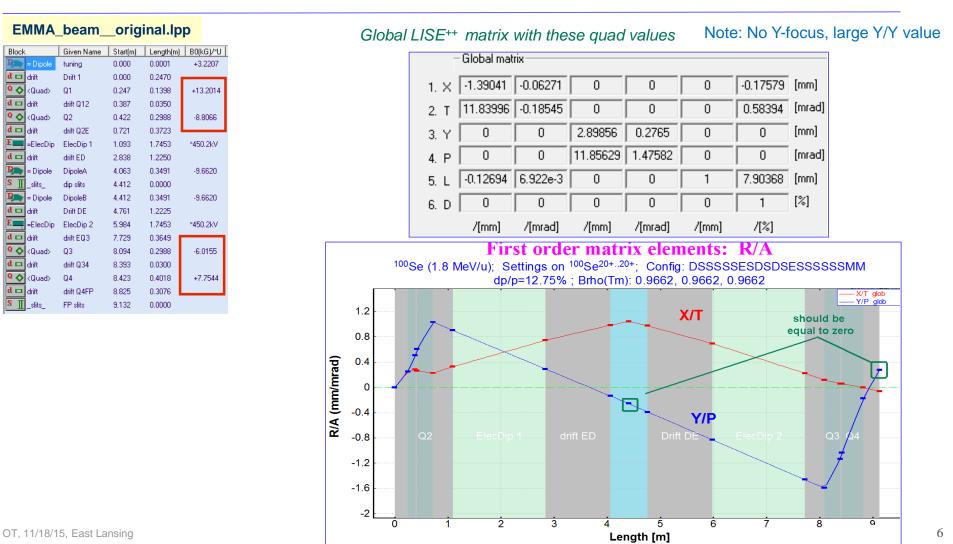
All "E"-blocks.

Extended configuration



|                                                                 | Quads & Dipoles setti<br>ILE: G:\EMMA\EI            | -                                                                                                                         | lpp                                                                                                                                                          |                                                                                                                                                      |                                                                                         |                                                                   |                                                                               |                                                                   |                                                                   |                                                |                                      |                                             |                                                                                                          | S                  | lits               |                    |                    | ~                                                                                                                 | ape                                                                  | ertu                                                                        | ires                      |                                                                      |
|-----------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------|--------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|--------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------|
| 1<br>N<br>or                                                    | 2<br>Block name                                     | 3<br>Kind of<br>Block                                                                                                     | 4<br>Start<br>(m)                                                                                                                                            | 5<br>Length<br>(m)                                                                                                                                   | 6<br>DriftMode<br>Angle(*)*                                                             | 7<br>B0(kG)                                                       | 8<br>Br-corrsp<br>Br-dip <b>*</b>                                             | 9<br>Rapp(cm)<br>R(m) <b>*</b>                                    | 10<br>L_eff(m)<br>Len(m)*                                         | 11<br>2nd<br>order                             |                                      | 13<br>AngAo<br>mode                         | 14<br>c Slits<br>shape                                                                                   | 15<br>Xmin<br>slit | 16<br>Xmax<br>slit | 17<br>Ymin<br>slit | 18<br>Ymax<br>slit | 19<br>Appert<br>shape                                                                                             | 20<br>Xmin<br>limit                                                  |                                                                             | 22<br>Ymin<br>limit       |                                                                      |
| 12.<br>13.<br>14.<br>15.                                        | DipoleB<br>drift DE<br>ElecDip 2<br>drift EQ3<br>Q3 | Dipole<br>Drift<br>Drift<br>Drift<br>Drift<br>ElecDip<br>Drift<br>Dipole<br>Drift<br>ElecDip<br>Drift<br>ElecDip<br>Drift | $\begin{array}{c} 0.000\\ 0.000\\ 0.247\\ 0.387\\ 0.422\\ 0.721\\ 1.093\\ 2.838\\ 4.063\\ 4.412\\ 4.412\\ 4.412\\ 4.761\\ 5.984\\ 7.729\\ 8.094 \end{array}$ | $\begin{array}{c} 0.000\\ 0.247\\ 0.140\\ 0.035\\ 0.299\\ 0.372\\ 1.745\\ 1.225\\ 0.349\\ 0.000\\ 0.349\\ 1.222\\ 1.745\\ 0.365\\ 0.299 \end{array}$ | standard<br>-20.0 *<br>SLITS<br>-20.0 *<br>standard<br>+20.0 *<br>standard<br>multipole | +13.475<br>-8.770<br>546.4kV<br>+9.862                            | 0.9862<br>0.9862*<br>0.9862*<br>0.9862*<br>0.9862*                            | 3.00*<br>3.50<br>7.50<br>5.00*<br>1.00*<br>1.00*<br>5.00*<br>7.50 | 0.00*<br>0.14<br>0.30<br>1.75*<br>0.35*<br>0.35*<br>1.75*<br>0.30 | -<br>yes<br>yes<br>-<br>yes<br>yes<br>-<br>yes | 1<br>1                               | HV<br><br><br><br><br><br><br><br><br><br>- | rectn<br>rectn<br>rectn<br>rectn<br>rectn<br>rectn<br>rectn<br>rectn<br>rectn<br>rectn<br>rectn<br>rectn | -200               | +200               | -50                | +50                | ellps<br>rectn<br>ellps<br>rectn<br>rectn<br>rectn<br>rectn<br>rectn<br>rectn<br>rectn<br>rectn<br>ellps<br>ellps | -31<br>-67<br>-68<br>-68<br>-62<br>-102<br>-102<br>-62<br>-68<br>-68 | +31<br>+31<br>+67<br>+68<br>+68<br>+62<br>+102<br>+102<br>+62<br>+68<br>+68 | -46<br>-200<br>-68<br>-68 | +31<br>+31<br>+67<br>+68<br>+20(<br>+46<br>+46<br>+20(<br>+68<br>+68 |
| 17.<br>18.<br>19.<br><br>! s<br>! C<br>! C<br>! C<br>! C<br>! C | drift Q34<br>Q4<br>drift Q4FP<br>FP slits<br>       | corrsp" - quad<br>p(cm)" - radir<br>ff(m)" - effed<br>c mode" - only<br>2                                                 | drupole(s<br>us(half-a<br>ctive len<br>y for qua<br>- recalo                                                                                                 | sextupole<br>aperture)<br>ngth of q<br>adrupole(<br>culate au                                                                                        | e) field is<br>of quadrup<br>uadrupole(s<br>sextupole).<br>tomatically                  | scaled to<br>pole(sextu<br>sextupole)<br>; 0 - no a<br>y the matr | ole settin<br>this Brho<br>pole) in c<br>in m, wic<br>ctions; 1<br>ix, keep B | -value; "<br>m; "R(m)<br>h is used<br>- recalcu<br>(field)        | Br-dip*"<br>-dip*" -<br>for Opti<br>late auto                     | - dipol<br>dipole<br>cal mat<br>matical        | e magn<br>raidus<br>rix ca<br>ly B(1 | netic :<br>s [m]<br>alcual<br>field)        | rigidity<br>tiuons;                                                                                      | [T*m]<br>"Len(     | (m) <b>*</b> " –   |                    |                    | /                                                                                                                 |                                                                      |                                                                             | -75<br>-92<br>-75<br>     | +75<br>+92<br>+75<br>                                                |

! Column 13: "AngAcc mode" - "H(V)" : horizontal(vertical) angular acceptance will be applied for this block ! Columns 15-18,20-23: slits and aperture(limit) sizes in [mm]. If slit or aperture(limit) does not have action, then its size value is absent


> These aperture parameters are used to obtain angular and momentum acceptances of the separator.

This settings list can be produced in LISE<sup>++</sup> using menu "Experimental Settings -> Optics -> Optics settings: View and Print"





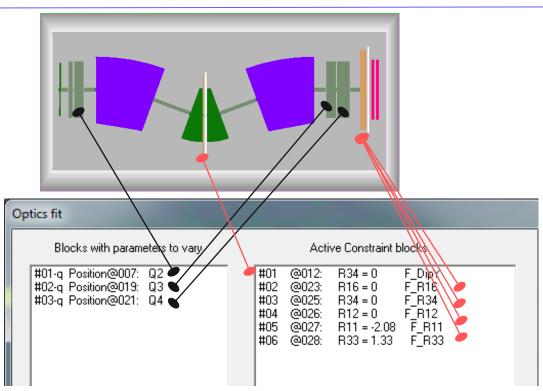
- LISE<sup>++</sup> does not provide information for mass dispersion
- So, this value can not be used for optimization constraint
- Quad values have been taken from EMMA beam example
- All matrices have been calculated inside LISE<sup>++</sup>





## **EMMA optics : modification**




 LISE<sup>++</sup> optimization was done to get Y-focus in the middle of M-dipole, X-& Y- focuses @ the end, R11 & R33 values according to the EMMA paper

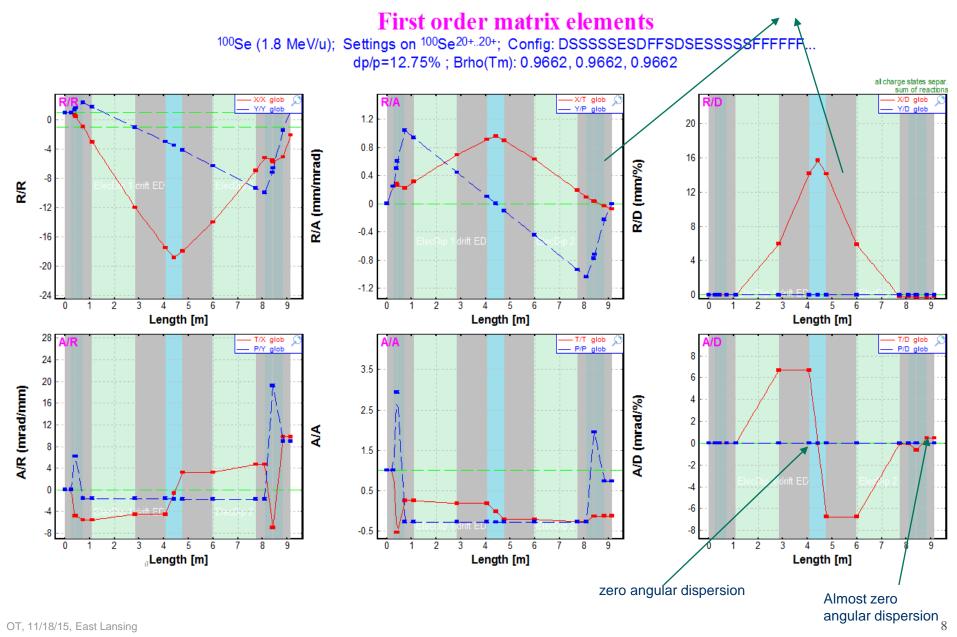
| EMMA_ | beam | origina | I.lpp |
|-------|------|---------|-------|
|-------|------|---------|-------|

| Block             | Given Name | Start(m) | Length(m) | B0(kG)/*U |
|-------------------|------------|----------|-----------|-----------|
| Dipole = Dipole   | tuning     | 0.000    | 0.0001    | +3.2207   |
| d 🗖 drift         | Drift 1    | 0.000    | 0.2470    |           |
| 🝳 🔷 <quad></quad> | Q1         | 0.247    | 0.1398    | +13.2014  |
| d 🗖 drift         | drift Q12  | 0.387    | 0.0350    |           |
| 🍳 🔷 <quad></quad> | Q2         | 0.422    | 0.2988    | -8.8066   |
| d 🗖 drift         | drift Q2E  | 0.721    | 0.3723    |           |
| E = ElecDip       | ElecDip 1  | 1.093    | 1.7453    | *450.2kV  |
| d 🗖 drift         | drift ED   | 2.838    | 1.2250    |           |
| Dipole = Dipole   | DipoleA    | 4.063    | 0.3491    | -9.6620   |
| S Islits_         | dip slits  | 4.412    | 0.0000    |           |
| 📭 = Dipole        | DipoleB    | 4.412    | 0.3491    | -9.6620   |
| d 🗖 drift         | Drift DE   | 4.761    | 1.2225    |           |
| E = ElecDip       | ElecDip 2  | 5.984    | 1.7453    | *450.2kV  |
| d 🗖 drift         | drift EQ3  | 7.729    | 0.3649    |           |
| 🍳 🔷 <quad></quad> | Q3         | 8.094    | 0.2988    | -6.0155   |
| d 🗖 drift         | drift Q34  | 8.393    | 0.0300    |           |
| 🍳 🔷 <quad></quad> | Q4         | 8.423    | 0.4018    | +7.7544   |
| d 🗖 drift         | drift Q4FP | 8.825    | 0.3076    |           |
| S                 | FP slits   | 9.132    | 0.0000    |           |

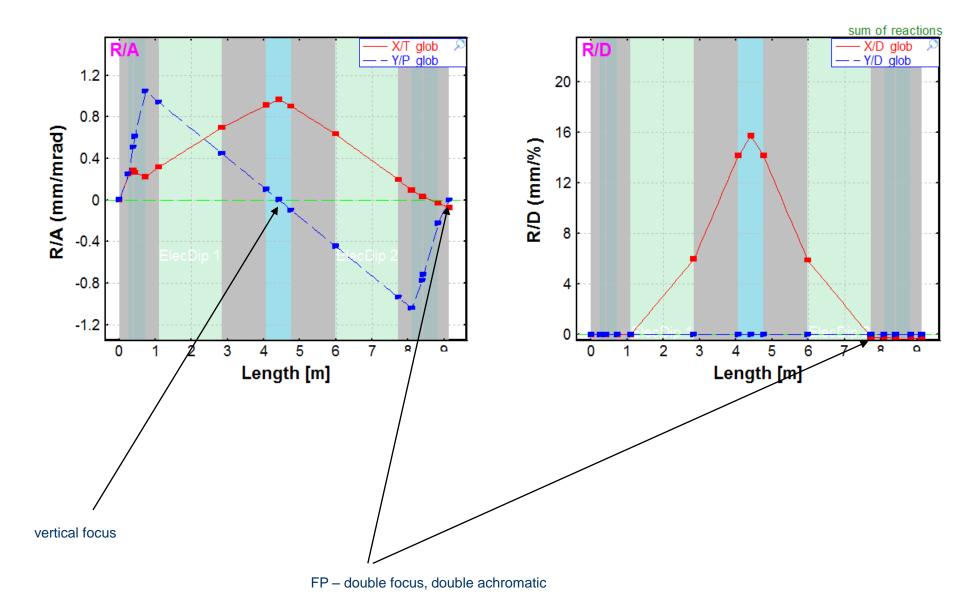
#### EMMA\_beam.lpp

| Block               |        | Given Name | Start(m) | Length(m) | B0(kG)/*U |
|---------------------|--------|------------|----------|-----------|-----------|
| Der -               | Dipole | tuning     | 0.000    | 0.0001    | +3.2207   |
| d 🗖 dri             | ft     | Drift 1    | 0.000    | 0.2470    |           |
| Q 🔷 <0              | )uad>  | Q1         | 0.247    | 0.1398    | +13.2014  |
| d 🗖 dri             | ft     | drift Q12  | 0.387    | 0.0350    |           |
| Q 🔷 <0              | )uad>  | Q2         | 0.422    | 0.2988    | -8.5920   |
| d 🗖 dri             | ft     | drift Q2E  | 0.721    | 0.3723    |           |
| E = E               | lecDip | ElecDip 1  | 1.093    | 1.7453    | *450.2kV  |
| d 🗖 dri             | ft     | drift ED   | 2.838    | 1.2250    |           |
| <b>D</b> =          | Dipole | DipoleA    | 4.063    | 0.3491    | -9.6620   |
| F 🏌 Fit             |        | F_DipY     | 4.412    | 0.0000    |           |
| F 🏌 Fit             |        | F_DipX     | 4.412    | 0.0000    |           |
| <mark>S ∏</mark> _s | lits_  | dip slits  | 4.412    | 0.0000    |           |
| <b>D</b> =          | Dipole | DipoleB    | 4.412    | 0.3491    | -9.6620   |
| d 🗖 dri             | ft     | Drift DE   | 4.761    | 1.2225    |           |
| E=E                 | lecDip | ElecDip 2  | 5.984    | 1.7453    | *450.2kV  |
| d 🗖 dri             | ft     | drift EQ3  | 7.729    | 0.3649 🌈  |           |
| <mark>Q 🔷</mark> <0 | )uad>  | Q3         | 8.094    | 0.2988    | -5.5964   |
| d 🗖 dri             | ft     | drift Q34  | 8.393    | 0.0300    |           |
| <mark>Q 🔷</mark> <0 | )uad>  | Q4         | 8.423    | 0.4018    | +6.7405   |
|                     |        | 100.004000 | 0.005    |           |           |




#### Global LISE<sup>++</sup> matrix with new quad values

| – Global mati | Global matrix |         |           |       |          |        |  |  |  |  |
|---------------|---------------|---------|-----------|-------|----------|--------|--|--|--|--|
| -2.07981      | -0.0736       | 0       | 0         | 0     | -0.22594 | [mm]   |  |  |  |  |
| 9.77991       | -0.13474      | 0       | 0         | 0     | 0.45385  | [mrad] |  |  |  |  |
| 0             | 0             | 1.35247 | -1.103e-3 | 0     | 0        | [mm]   |  |  |  |  |
| 0             | 0             | 8.96657 | 0.73193   | 0     | 0        | [mrad] |  |  |  |  |
| -0.12657      | 6.385e-3      | 0       | 0         | 1     | 7.90368  | [mm]   |  |  |  |  |
| 0             | 0             | 0       | 0         | 0     | 1        | [%]    |  |  |  |  |
| /[mm]         | /[mrad]       | /[mm]   | /[mrad]   | /[mm] | /[%]     |        |  |  |  |  |

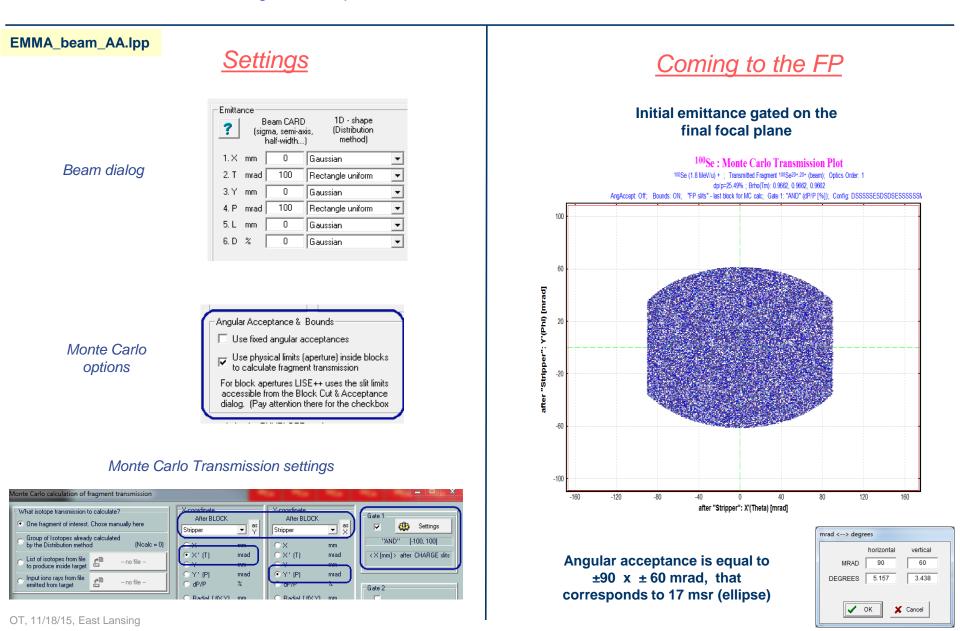





#### Will be zoomed on the next page





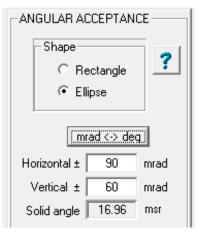


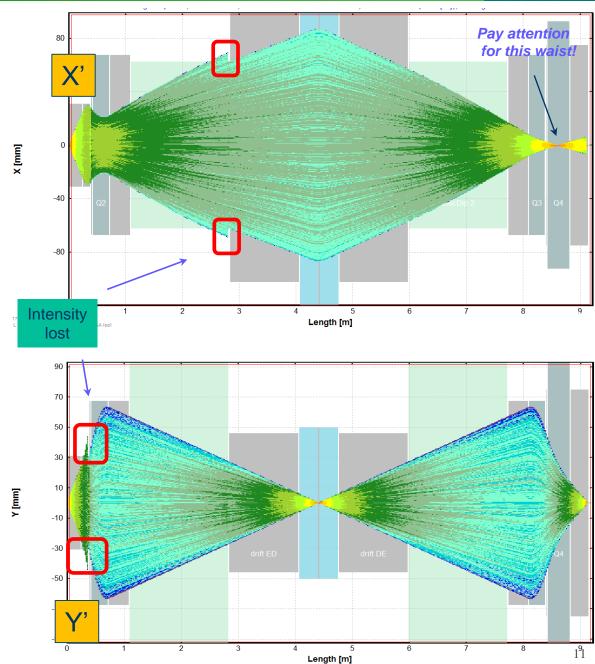

MICHIGAN STATE

E ++



#### See details for angular acceptance with the next link http://lise.nscl.msu.edu/9\_8/SE\_blocks.pdf#page=5



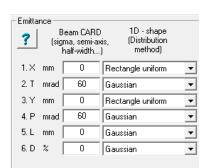




# **Angular Acceptance : Results**



EMMA\_beam\_AA.lpp







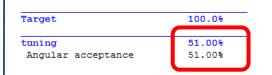

# **Angular Acceptances transmission benchmarks**

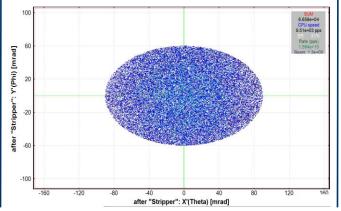


### "Distribution" method With set Angular Acceptances



| 100Se               | Unknown ( | Z=34, N=66) |
|---------------------|-----------|-------------|
|                     |           |             |
| Q1(tuning)          |           | 20          |
| Q2(ElecDip 1)       |           | 20          |
| Q3(DipoleA)         |           | 20          |
| Q4(DipoleB)         |           | 20          |
| Q5(ElecDip 2)       |           | 20          |
| Reaction            |           | BEAM        |
| Ion Production Rat  | e (pps    | ) 1.63e+10  |
| Total ion transmis  | sion (%)  | 52.022      |
| Total: this reacti  | on (pps   | ) 1.63e+10  |
| Total: All reaction | ns (pps   | ) 1.63e+10  |
| X-Section in targe  | t (mb)    | beam        |
| Target              | (%)       | 100         |
| Q (Charge) ratio    | (%)       | 100         |
| tuning              | (%)       | 52.02       |
| X angular transmis  | sion (%)  | 82.61       |
| Y angular transmis  | sion (%)  | 62.98       |
|                     |           |             |


### "Monte Carlo " method With set Angular Acceptances No bounds


-Angular Acceptance & Bounds

- Use fixed angular acceptances
- Use physical limits (aperture) inside blocks to calculate fragment transmission

For block apertures LISE++ uses the slit limits accessible from the Block Cut & Acceptance dialog. (Pay attention there for the checkbox

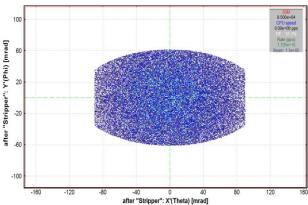
|     |       | N of   | N of    |         |           |
|-----|-------|--------|---------|---------|-----------|
| #   | Ion   | Passed | Initial | Transmi | ssion     |
| A11 |       | 66579  | 130560  | 51.00%  |           |
| 0   | 100Se | 167370 | 327680  | 51.08%  | (+/-0.12% |





### "Monte Carlo " method No Angular Acceptances WITH bounds

-Angular Acceptance & Bounds

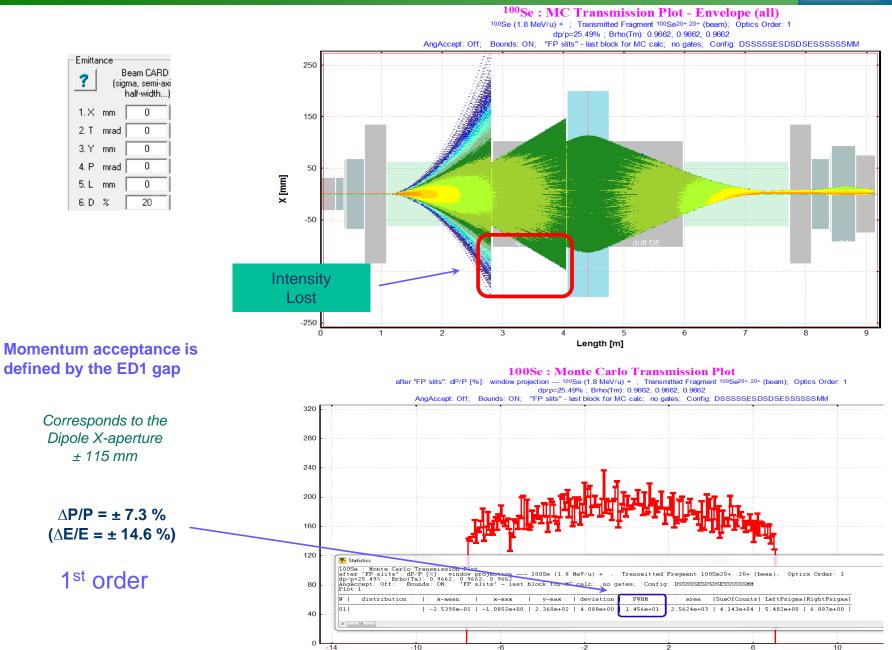

- Use fixed angular acceptances
- Use physical limits (aperture) inside blocks to calculate fragment transmission

For block apertures LISE++ uses the slit limits accessible from the Block Cut & Acceptance dialog. (Pay attention there for the checkbox

#### 100Se : Monte Carlo Transmission Plot

100Se (1.8 MeV/u) + ; Transmitted Fragment 100S dp/p=25.49%; Brho(Tm): 0.9662, 0.9662, 0.9662 AngAccept: Off; Bounds: ON; "FP slits" - last

|     |       | N of   | N of    |         |       |     |
|-----|-------|--------|---------|---------|-------|-----|
| #   | Ion   | Passed | Initial | Transmi | ssion |     |
| A11 |       | 85045  | 153693  | 55.33%  |       |     |
| 0   | 100Se | 84995  | 153600  | 55.34%  | (+/-  | ٥., |






## **Momentum Acceptance**

4:59:00 :\EMMA\EMMA beam MA.lop]





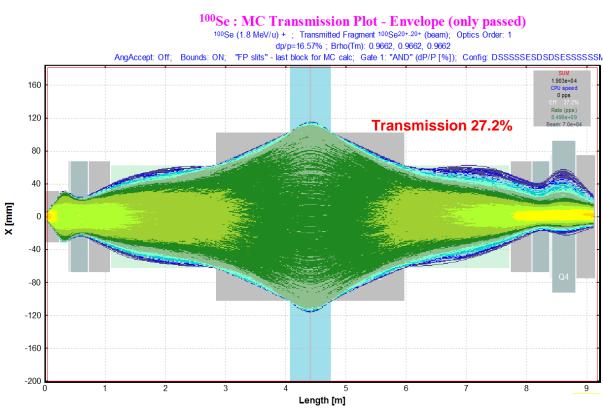
after "FP slits": dP/P [%]: window projection



# **EMMA acceptances benchmark**



### Emittance corresponding to the acceptances


| 1. X     mm     1     Gaussian       2. T     mrad     90     Gaussian       3. Y     mm     1     Gaussian       4. P     mrad     60     Gaussian       5. L     mm     0     Gaussian       6. D     %     7.3     Gaussian | Emittar | B<br>(sigi | eam CARD<br>ma, semi-ax<br>nalf-width) |          |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------|----------------------------------------|----------|---|
| 3.Y mm 1 Gaussian ✓<br>4.P mrad 60 Gaussian ✓<br>5.L mm 0 Gaussian ✓                                                                                                                                                           | 1. X    | mm         | 1                                      | Gaussian | - |
| 4. P mrad 60 Gaussian ▼<br>5. L mm 0 Gaussian ▼                                                                                                                                                                                | 2. T    | mrad       | 90                                     | Gaussian | - |
| 5. L mm 0 Gaussian 💌                                                                                                                                                                                                           | 3. Y    | mm         | 1                                      | Gaussian | - |
|                                                                                                                                                                                                                                | 4. P    | mrad       | 60                                     | Gaussian | - |
| 6. D % 7.3 Gaussian 💌                                                                                                                                                                                                          | 5. L    | mm         | 0                                      | Gaussian | - |
|                                                                                                                                                                                                                                | 6. D    | %          | 7.3                                    | Gaussian | - |

Note: Horizontal slits has to be applied for the "Distribution" method to limit momentum acceptance which happens due to apertures.

#### "Distribution" method With set Angular Acceptances and H.slits in MD +/- 130 mm

| statistics: 100Se                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 100Se Unkno                                                                   | own (Z=34,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N=66)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Q1(tuning)<br>Q2(ElecDip 1)<br>Q3(DipoleA)<br>Q4(DipoleB)                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Q5(ElecDip 2)<br>Reaction                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20<br>BEAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Ten Duckien Dete                                                              | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.07-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Total ion transmission                                                        | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 25.187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Total: this reaction<br>Total: All reactions<br>X-Section in target<br>Target | (pps)<br>(pps)<br>(mb)<br>(%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.87e+9<br>7.87e+9<br>beam<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100<br>39.68<br>63.01<br>62.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Drift 1<br>Q1<br>drift Q12                                                    | (&)<br>(&)<br>(&)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| drift Q2E<br>ElecDip 1                                                        | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| dip slits                                                                     | (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 63.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| X space transmission<br>Y space transmission                                  | (३)<br>(१)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63.47<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                               | 100Se       Unknown         Q1 (tuning)       Q2 (ElecDip 1)         Q3 (DipoleA)       Q4 (DipoleB)         Q5 (ElecDip 2)       Reaction         Total ion transmission       Total: this reaction         Total: this reaction       Total: All reactions         X-Section in target       Target         Q (Charge) ratio       tuning         X angular transmission       Drift 1         Q1       drift Q12         Q2       drift Q2E         ElecDip 1       drift ED         dip slits       X space transmission | 100Se       Unknown (Z=34,         Q1 (tuning)       Q2 (ElecDip 1)         Q3 (DipoleA)       Q4 (DipoleB)         Q5 (ElecDip 2)       Reaction         Ion transmission (%)       Total ion transmission (%)         Total ion transmission (%)       Total: this reaction (pps)         Total: All reactions (pps)         X-Section in target (mb)         Target (%)         Q (Charge) ratio (%)         Y angular transmission (%)         Y angular transmission (%)         Drift 1 (%)         Q1 (%)         drift Q12 (%)         BleeDip 1         drift ED         H.Slits in MD +/-         DipoleA         X space transmission (%) |

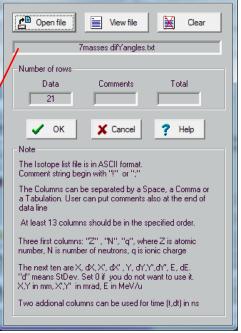
#### "Monte Carlo " method; No Angular Acceptances; WITH bounds



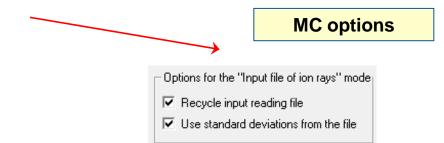
OT, 11/18/15, East Lansing



C


# **Benchmarks with input rays**






In order to reproduce NIMA plots, input rays files has been created to use in the LISE<sup>++</sup> MC dialog

|       |                |                      |        |                           |                    |      |        |      |           |      |                                  | <u> </u> |
|-------|----------------|----------------------|--------|---------------------------|--------------------|------|--------|------|-----------|------|----------------------------------|----------|
| Z     | N              | q                    | X (mm) | dX                        | X' (mrad)          | dX'  | Y (mm) | dY   | Y' (mrad) | dY'  | E,MeVu                           | dE       |
| 50    | 46             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | -34       | 0.1  | 1.87555                          | 0        |
| 50    | 47             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | -34       | 0.1  | 1.85606                          | 0        |
| 50    | 48             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | -34       | 0.1  | 1.83701                          | 0        |
| 50    | 49             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | -34       | 0.1  | 1.81829                          | 0        |
| 50    | 50             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | -34       | 0.1  | 1.8                              | 0        |
| 50    | 51             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | -34       | 0.1  | 1.782                            | 0        |
| 50    | 52             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | -34       | 0.1  | 1.76443                          | 0        |
| 50    | 53             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | -34       | 0.1  | 1.74714                          | 0        |
| 50    | 54             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | -34       | 0.1  | 1.73022                          | 0        |
| 50    | 46             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | 0         | 0.1  | 1.87555                          | 0        |
| 50    | 47             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | 0         | 0.1  | 1.85606                          | 0        |
| 50    | 48             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | 0         | 0.1  | 1.83701                          | 0        |
| 50    | 49             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | 0         | 0.1  | 1.81829                          | 0        |
| 50    | 50             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | 0         | 0.1  | 1.8                              | 0        |
| 50    | 51             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | 0         | 0.1  | 1.782                            | 0        |
| 50    | 52             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | 0         | 0.1  | 1.76443                          | 0        |
| 50    | 53             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | 0         | 0.1  | 1.74714                          | 0        |
| 50    | 54             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | 0         | 0.1  | 1.73022                          | 0        |
| 50    | 46             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | 34        | 0.1  | 1.87555                          | 0        |
| 50    | 47             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | 34        | 0.1  | 1.85606                          | 0        |
| 50    | 48             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | 34        | 0.1  | 1.83701                          | 0        |
| 50    | 49             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | 34        | 0.1  | 1.81829                          | 0        |
| 50    | 9 diff<br>with | eren                 | t mas  | ses                       | $@ \mathbf{E}_{0}$ | =18  | MV     | 0    | 34        | 0.1  | 1.8                              | 0        |
| 50    | 51             | 20                   | 0      | 0                         | 0                  | 1    | 0      | , 0  | D NIM     | 0.1  | 1.782                            | 0        |
| 50    | With           | Y zan                | gies   | <b>Of</b> <sub>0</sub> -2 | ,0,+2              | aegi | rees ( | as ( | אוא צ     | AoFI | <b>g</b> 1 <b>2</b> 5 <b>4</b> 3 | 0        |
| 50    | 53             | 20                   | 0      | 0                         | 0                  | 1    | 0      | 0    | 34        | 0.1  | 1.74714                          | 0        |
| T 501 | 18/18          | -as <sup>20</sup> La | nsing  | 0                         | 0                  | 1    | 0      | 0    | 34        | 0.1  | 1.73022                          | 0        |



х







### NIM A544 (2005) 565

LISE++

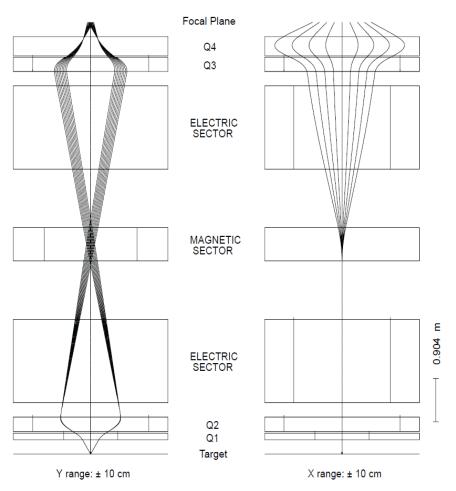
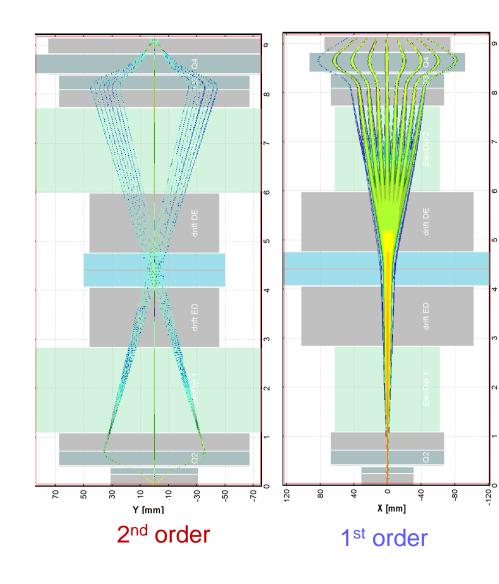




Fig. 2. Calculated mass focus of EMMA, showing rays corresponding to 9 adjacent masses emitted from the target with vertical angles of  $-2^{\circ}$ ,  $0^{\circ}$ , and  $2^{\circ}$ . At the focal plane, the 9 masses are seen to be dispersed horizontally and focussed vertically. Angular focussing in the horizontal direction is shown in Fig. 4.





0.904 m



#### NIM A544 (2005) 565

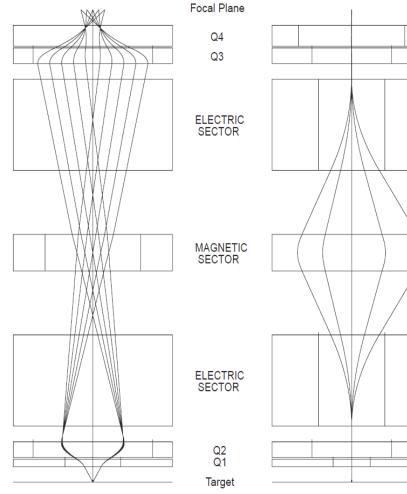
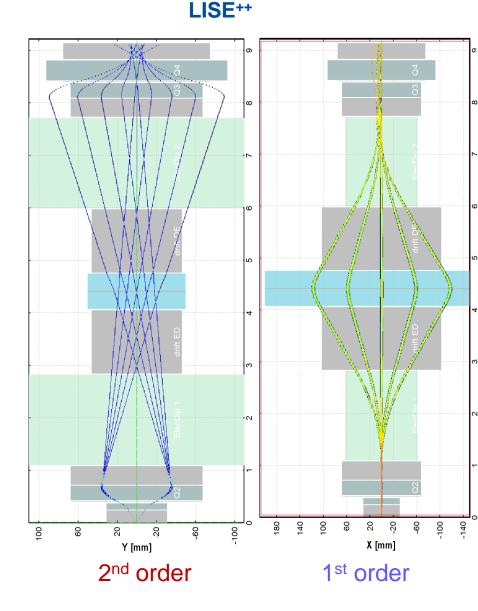
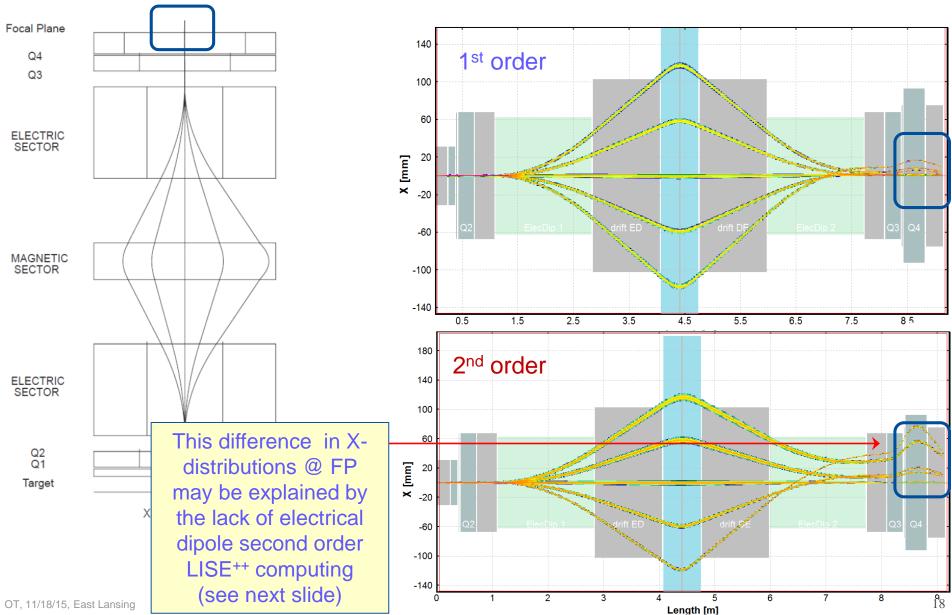








Fig. 3. Calculated energy focus of EMMA, showing rays corresponding to a single mass emitted from the target with vertical angles of  $-2^{\circ}$ ,  $0^{\circ}$ , and  $2^{\circ}$ , and with energies deviating from the central value by 0,  $\pm 7.5\%$ , and  $\pm 15\%$ . Chromatic aberrations in the vertical direction are evident in the vertical extent of the final focus.

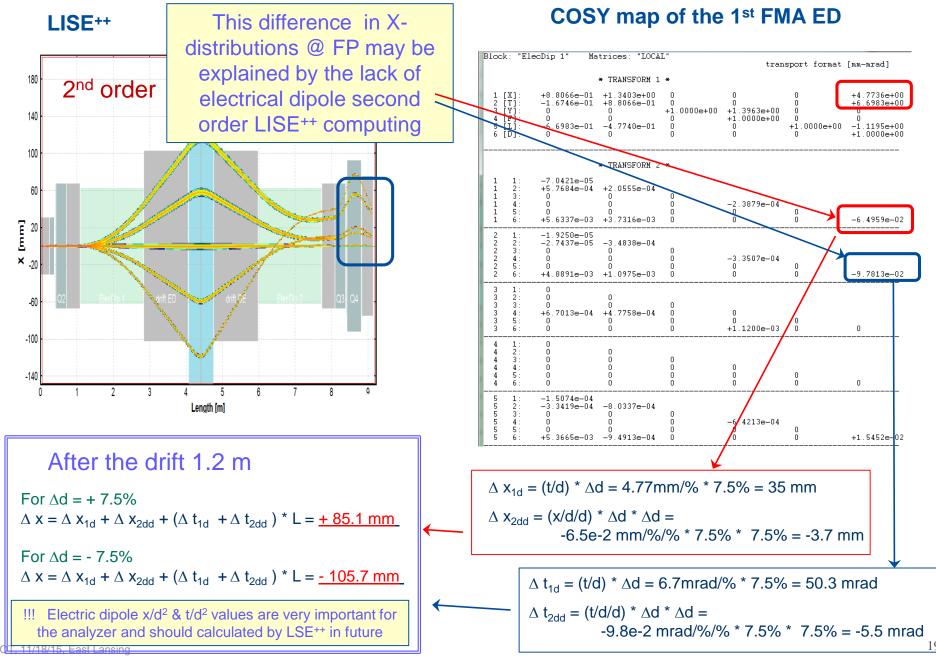





### NIM A544 (2005) 565

S NSCL

LISE++

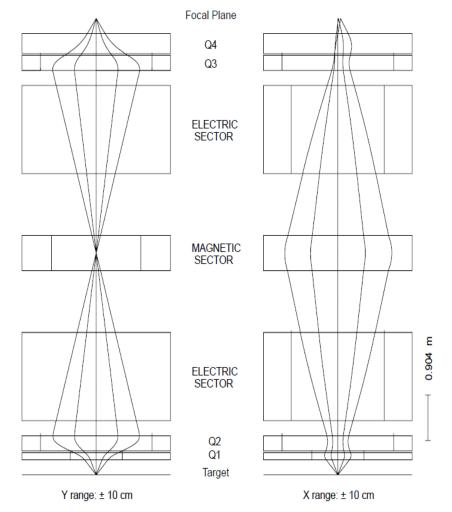


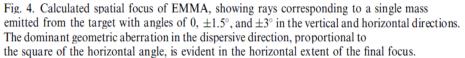


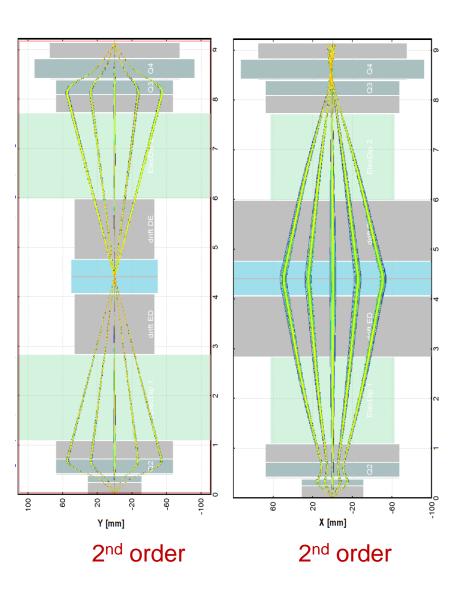

# **Benchmarks for Y-angle & Energy (continue 2)**

MICHIGAN STATE

E ++




### NIM A544 (2005) 565

LISE<sup>++</sup>









## NIM A544 (2005) 565



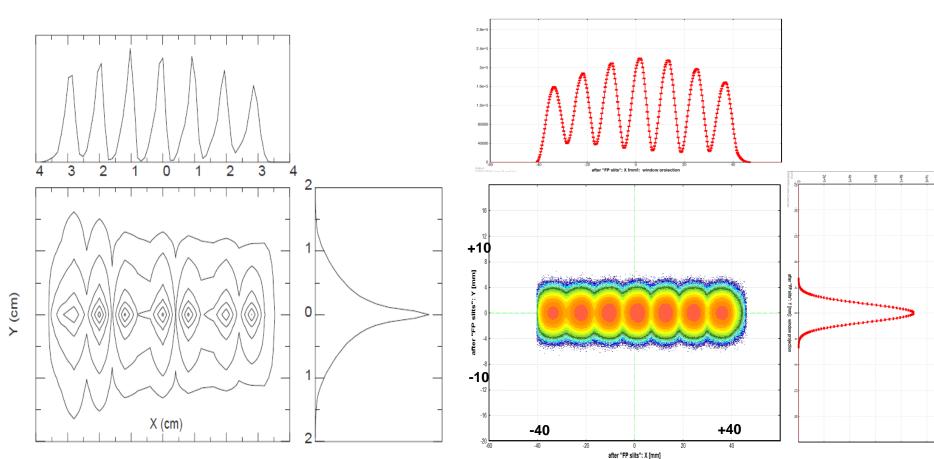



Fig. 5. Calculated M/q spectrum of EMMA centred about mass 100, showing 7 adjacent masses from 97 to 103 emitted from the target with uniform angular spreads of  $\pm 3^{\circ}$  in the horizontal and vertical directions, and a uniform energy distribution of  $\pm 10\%$ .



2<sup>nd</sup> order

## NIM A544 (2005) 565



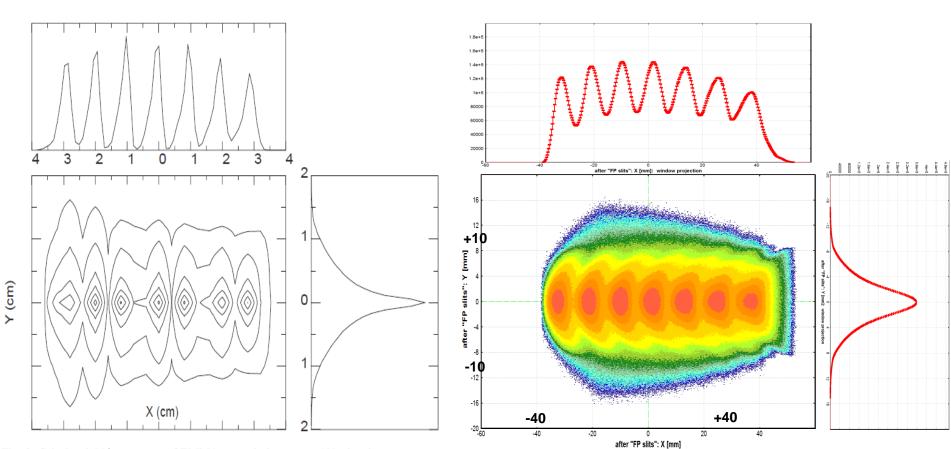
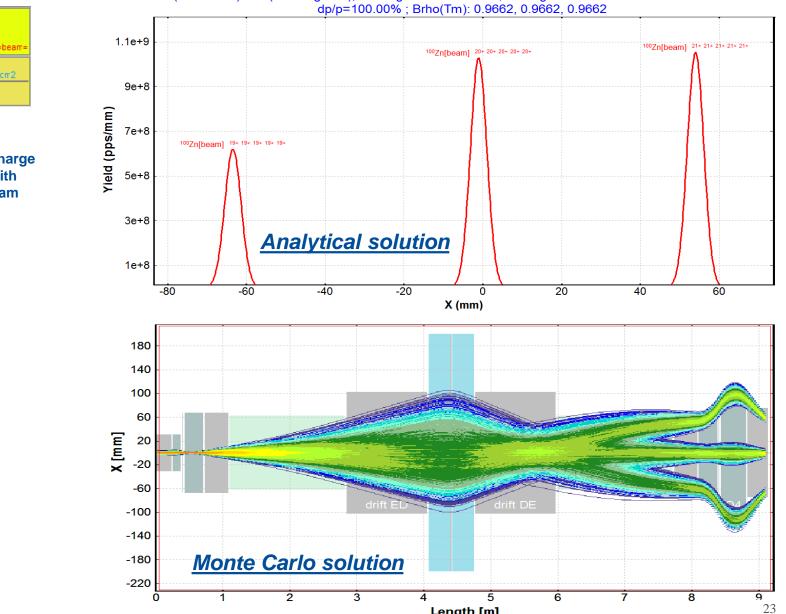




Fig. 5. Calculated M/q spectrum of EMMA centred about mass 100, showing 7 adjacent masses from 97 to 103 emitted from the target with uniform angular spreads of  $\pm 3^{\circ}$  in the horizontal and vertical directions, and a uniform energy distribution of  $\pm 10\%$ .



## **Charge state selection**





**FP slits-Xspace: output after slits** <sup>100</sup>Zn (1.8 MeV/u) + H (1e-4 mg/cm<sup>2</sup>); Settings on <sup>100</sup>Zn<sup>16+..16+</sup>; Config: DSSSSSESDFFSDSESSSSFFFFFF.

Length [m]

#### 100Zn30+ P rojectile 1.8 MeV/u 100 enA 100Zn16+..16+ =beam £ agment <sup>2</sup>H 0.0001 mg/cm2 T 🏉 Target ST 💿 Stripper

Very thin target for charge state simulation with "virtual" A=100 beam

OT, 11/18/15, East Lansing



# **Envelopes : LISE**<sup>++</sup> MC & analytical solutions $\rightarrow X \& Y$



 Projectile
 100 Se<sup>20+</sup>

 1.8 MeV/u
 100 enA

 F
 ragment

 100 Se<sup>20+,20+</sup>
 =bearr

 To
 Target

 Sro
 Sripper

 Emitance
 (Dirithuburon function)

 (pros. sere-adat, function)
 (Dirithuburon function)

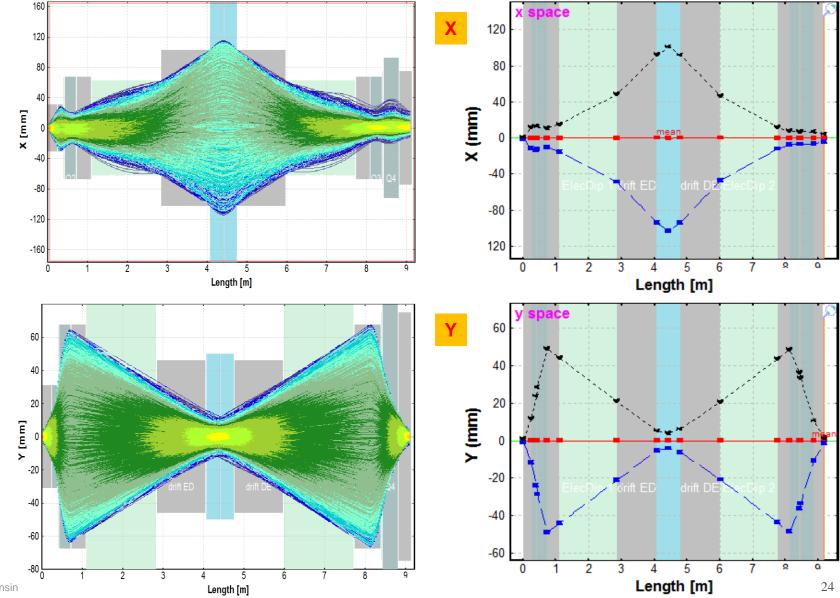
 (pros. sere-adat, function)
 (Dirithuburon function)

Gaussia

Gaussian

Gaussian

•


•

40

40 Gaussian

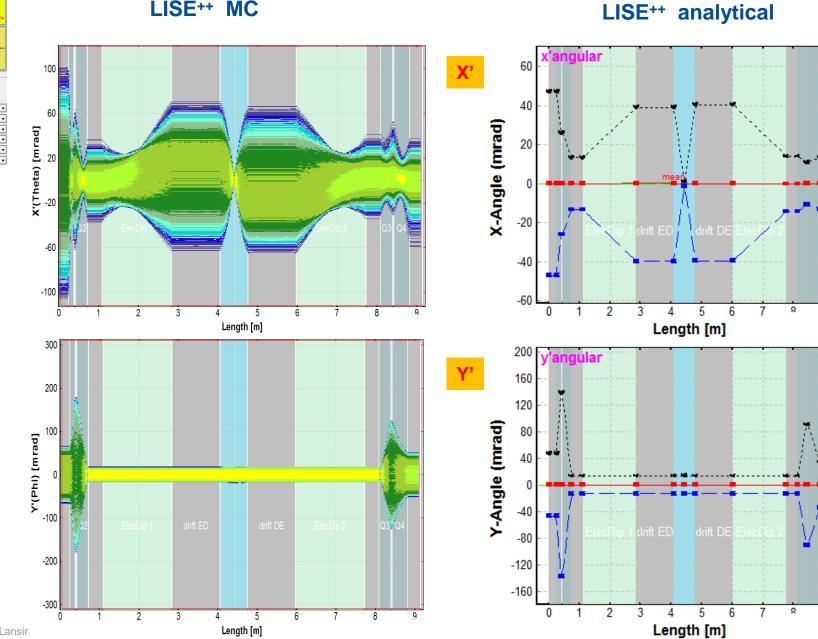


LISE<sup>++</sup> analytical



OT, 11/18/15, East Lansin




# **Envelopes : LISE**<sup>++</sup> MC & analytical solutions $\rightarrow X' \& Y'$

LISE<sup>++</sup> MC



Projectile 100 Se<sup>20+</sup> 1.8 MeV/u 100 enA Fragment 100 Se<sup>20+..20+</sup> =bea T 🌒 Target St 🛛 Strippe Emittance 1D - shape (Distribution Beam CARD (sigma, semi-axis half-width...) method Gaussia

Gaussia

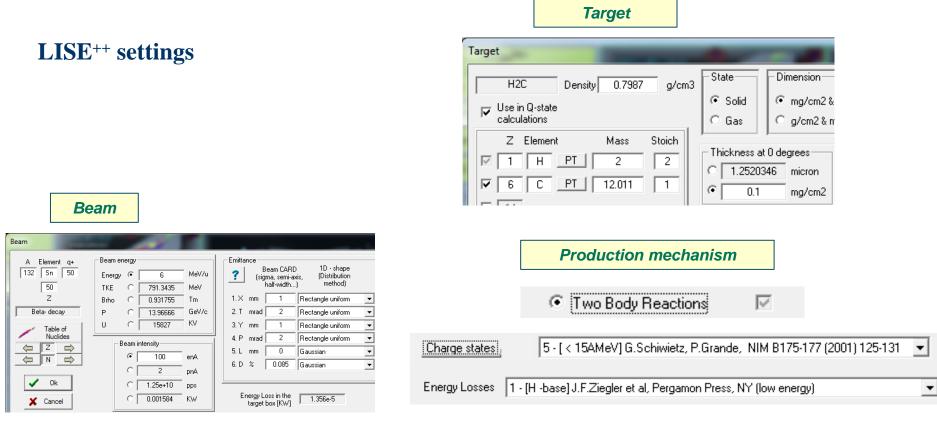


5

a

a




# Reaction d(<sup>132</sup>Sn,p)<sup>133</sup>Sn





Without gold degrader

| Projectile <sup>132</sup> Sn <sup>50+</sup>                     |                   |  |  |  |  |  |
|-----------------------------------------------------------------|-------------------|--|--|--|--|--|
| 6 MeV/u 100 enA<br>Fragment <sup>133</sup> Sn <sup>37+37+</sup> |                   |  |  |  |  |  |
| T 🔵 Target                                                      | H2C<br>0.1 mg/cm2 |  |  |  |  |  |
| ST Stripper                                                     |                   |  |  |  |  |  |



OT, 11/18/15, East Lansing





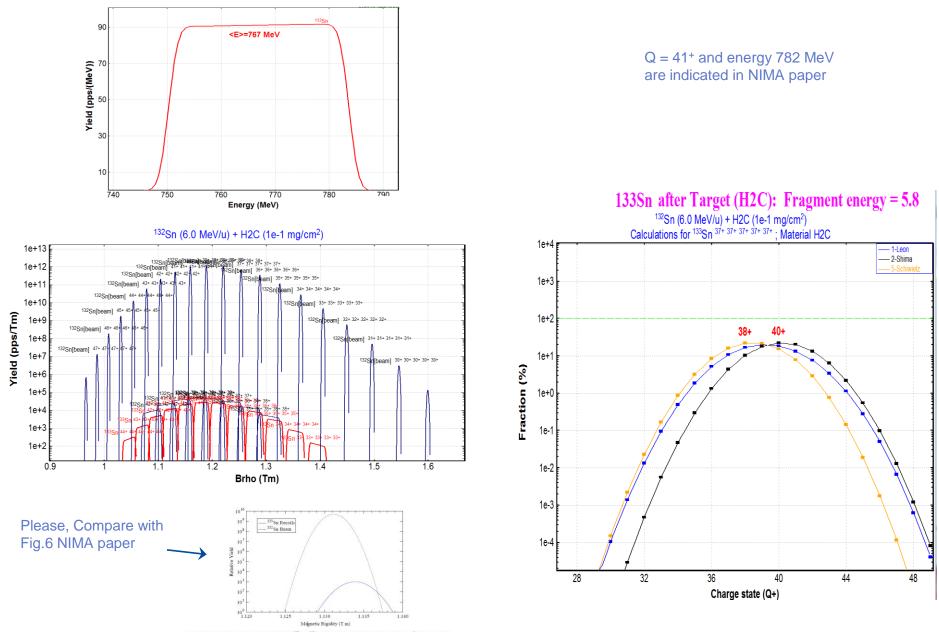
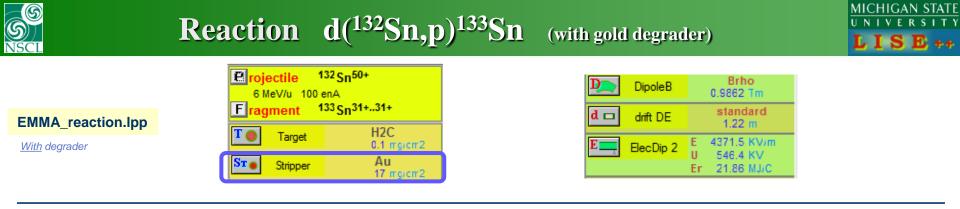
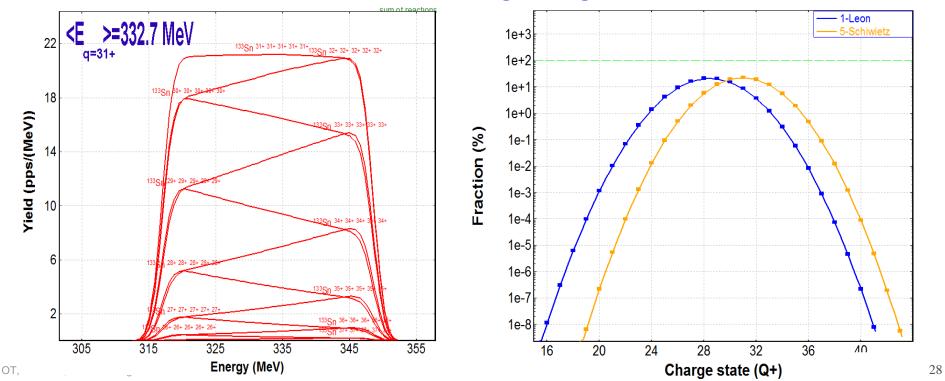




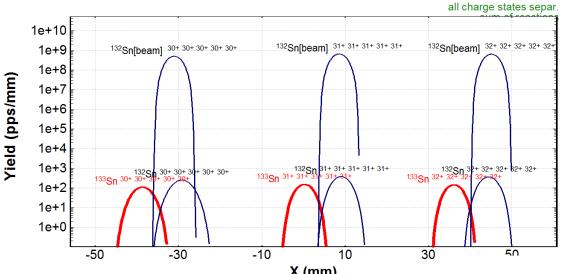

Fig. 6. Magnetic rigidities of beam and recoils from d(<sup>1138</sup>n.p)<sup>113</sup>Sn at 6 MeV/nucleon, calculated for a 100 µg cm<sup>-2</sup> (CD<sub>2</sub>), target and a realistic ISAC-II beam energy spread of ±0.17% (1*e*). This figure dramatically illustrates why a magnetic spectrometer cannot be used to separate beam and recoils in this reaction.



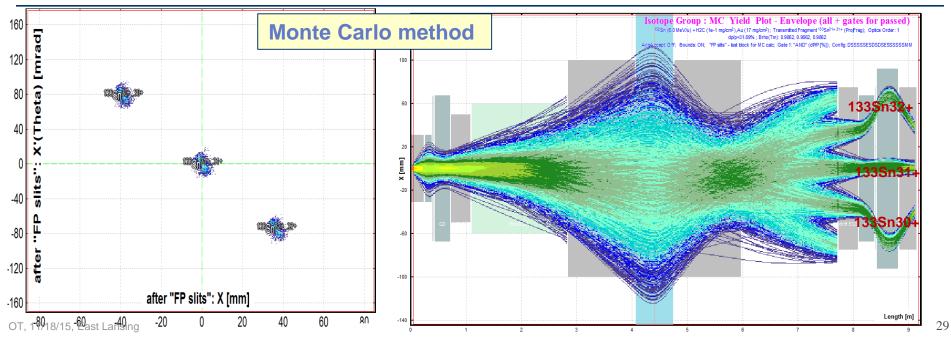
 $Q = 37^+$  (????) and energy 463 (??) MeV are indicated in NIMA paper

<sup>133</sup>Sn distributions after the gold degrader






# Reaction $d(^{132}Sn,p)^{133}Sn$ (with gold degrader)


#### "Distribution" method (analytical solution)

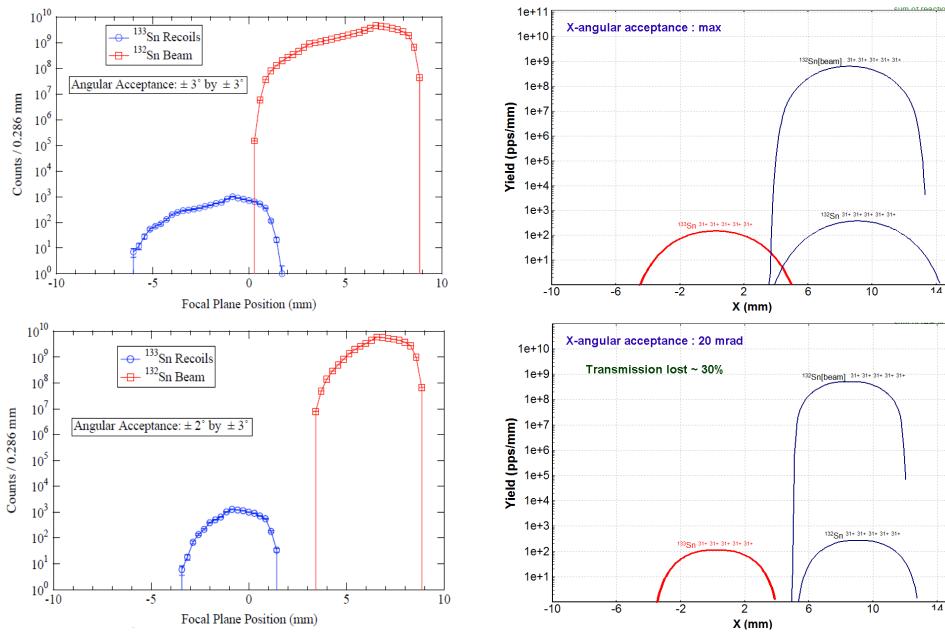
|                                                    |             | _         | <u> </u> |         |  |
|----------------------------------------------------|-------------|-----------|----------|---------|--|
| 133Sn Beta-                                        | - decay (Z= | 50, N=83) | Tin      |         |  |
| All reactions total iso<br>and Overall isotope tra |             |           | pps<br>% |         |  |
| Q1(tuning)                                         |             | 32        | 31       | 30      |  |
| Q2(ElecDip 1)                                      |             | 32        | 31       | 30      |  |
| Q3(DipoleA)                                        |             | 32        | 31       | 30      |  |
| Q4(DipoleB)                                        |             | 32        | 31       | 30      |  |
| Q5(ElecDip 2)                                      |             | 32        | 31       | 30      |  |
| Reaction                                           |             | TwoBody   | TwoBody  | TwoBody |  |
| Ion Production Rate                                | (pps)       | 6.19e+2   | 6.65e+2  | 5.26e+2 |  |
| Total ion transmission                             | (%)         | 20.336    | 21.853   | 17.282  |  |
| Total: this reaction                               | (pps)       | 1.81e+3   | 1.81e+3  | 1.81e+3 |  |
| X-Section in target                                | (mb)        | 2.16e+1   | 2.16e+1  | 2.16e+1 |  |
| Target                                             | (%)         | 100       | 100      | 100     |  |
| Unreacted in material                              | (%)         | 100       | 100      | 100     |  |
| Unstopped in material                              | (%)         | 100       | 100      | 100     |  |
| Stripper                                           | (&)         | 20.34     | 21.85    | 17.28   |  |
| Unreacted in material                              | (%)         | 100       | 100      | 100     |  |
| Q (Charge) ratio                                   | (%)         | 20.34     | 21.85    | 17.28   |  |
| Unstopped in material                              | (%)         | 100       | 100      | 100     |  |

# **FP slits-Xspace: output after slits**



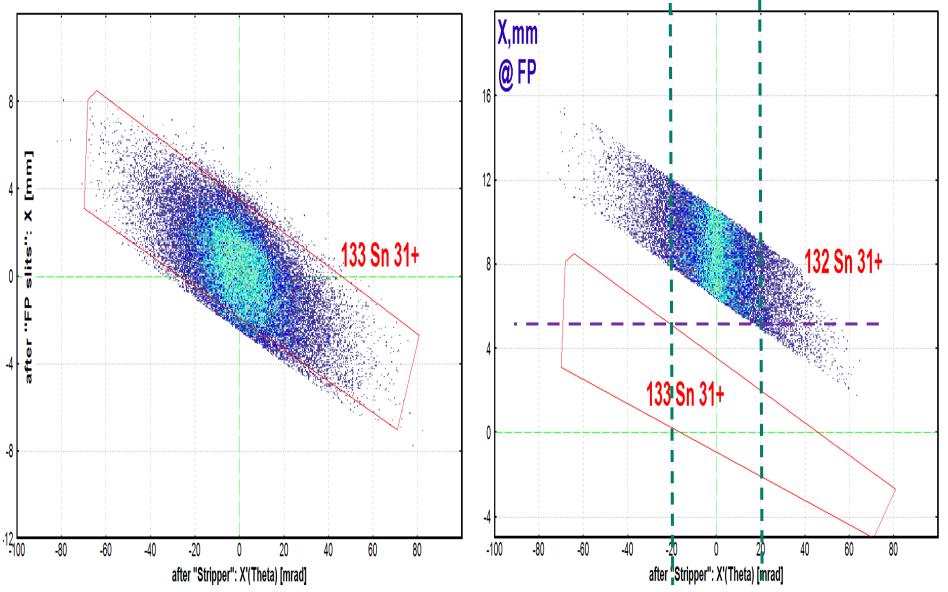
X (mm)






# $Reaction \ d(^{132}Sn,p)^{133}Sn \quad ({\rm with \ gold \ degrader})$

MICHIGAN STATE UNIVERSITY LISE++


#### NIM A544 (2005) 565













**Open Questions:** 

- 1. Mass & charge dispersion values calculation
- 2. Using Mass & charge dispersion values for optimization
- 3. <u>Electrical dipole second order matrix calculation! (new)</u>