

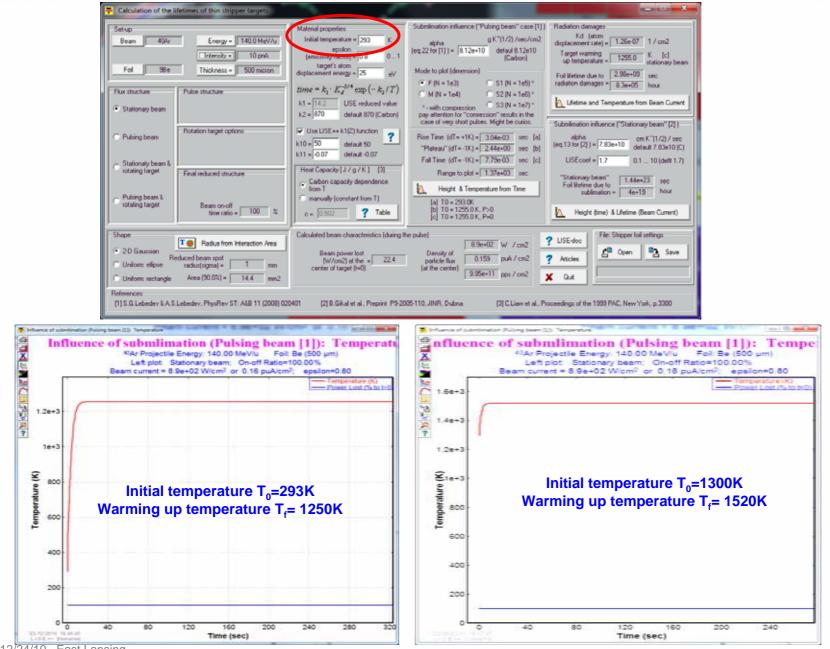
Update of the Stripper lifetime utility (9.2.38)

See

"The Stripper foil lifetime utility" part 1 (v.8.3.6) at: "Update of the Stripper foil lifetime utility" part 2 (v.8.3.13) at:

http://groups.nscl.msu.edu/lise/8_3/foil_lifetime_v8_3_6.pdf http://groups.nscl.msu.edu/lise/8_3/foil_lifetime_v8_3_13.pdf

Stripper Lifetime utility


(version 9.2.38)

- * Target initial temperature
- **Solution** Modification for "stationary beam" models in the case of pulsing beams
- ***** Rotation target: modifications for a reduced beam pulse length
- ***** New flux structure: Pulsing beam & rotating target

Initial temperature

Reference

[1] S.G.Lebedev & A.S.Lebedev, PhysRev ST: A&8 11 (2008) 020401

Modification for "stationary beam" models in the case of pulsing beams

[3] C.Liaw et al., Proceedings of the 1999 PAC, New York, p.3300

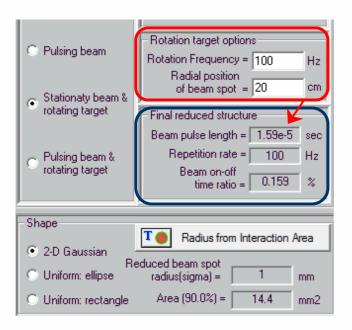
Calculation of the lifetimes of thin stripper targets			
Setup Beam 40/u Energy = 140.0 MeV//u Intensity = 100 pnA Fol Site Thickness = 500 micron	Material properties Initial temperature = [233 K epision [emissive/inctrol] = [0.8 01 target's atom displacement energy = [25 eV	Submimation influence ("Publing beam" case [1]) abba g K"[1/2] /sec/cm2 [eq 22 for [1]] = [0.12e+10] defaul 0.12e10 (Carbon) (Carbon) - Mode to pick (dimension) \$1 [N = 160]	Kd (atom displacement sale = 126e-06 1 / cm2 Target warming up temperature = 2230.3 K [c] stationary beam Foll lifetime due to 2277e+08 sec
Fixe structure Fulle structure Fulle structure Folden Fol	timp = k - K - 54 exp(- x ₂ /r) k1 = 14.2 USE reduced value k2 = 600 default 870 (Cabon) If Use USE ++ k1(2) kinction ? k10 = 50 default 80	M (N = 1e4) \$2 (N = 1e6)* * with compression \$3 (N = 1e7)* pay alterition for "conversion" results in the case of very short pakers. Might be caulo. Rise Time (dT = 1K) = <u>3.04e.04</u> sec [a]	Letime and Temperature from Beam Current Submimotion influence ("Stationary beam" [2]) Solita Solita Control (12) (2000) (2000) (2000) (2000) (2000)
Stationally beam & Stationally beam & Final reduced structure Publing beam &	k11 = 0.07 default 0.07 Heat Capacity [J / g / K] [3] Cabon capacity dependence hon T manually (constant from T)	"Paleau" (dT - 1(k) = (4.77e 0) sec [b] Fail Time (dT = 1(k) = (8.57e 0.4) sec [c] Range to plot = 2.54e+02 sec [c] Height & Temperature from Time [a] 10 = 233.0K [b] [c]	Ind, 1.150 (c) = /X34+10 default 7.83+10 (c) LISEcore! = 1.7 0.110 (deft 1.7) "Statomay beam" Foll Wetma due to sublimation = 21+04 7.41e+07 2.1e+04
Installing larger Beam on off the ratio = 100 x Shape Image: Comparison of the ratio = 100 x C 20 Gaussian Reduced beam stot	c = 0.502 ? Table Calculated beam characteristics (during the Beam power lost (W/cm2) at the = 224	b) 10 = 2230 3 K, P>0 c) 10 = 2230 3 K, P=0 he pulse) Density of	Heght (time) & Lifetime (Beam Current) USE doc File: Shipper foil settings Addes Save

Calculation of the lifetimes of thin stripper tan and the X Submitmation influence ("Pulsing beam" case [1]) Radiation damages Set-up Material properties Kd (atom displacement rate) = 6.31e-08 1 / cm2 g K*(1/2) /sec/cm2 Initial temperature = 293 Beam 404r Energy = 140.0 MeV/u alpha (emissivity factor) = 0.8 eq.22 for [1]) = 0.12e+10 defaul 0.12e10 Target warming up temperature = 1056.1 11 K [c] stationary beam Intensity = 100 pnA (Carbon) target's atom Foil 98e Thickness = 500 micron Mode to plot [dimension] displacement energy = 25 Foil lifetime due to 6.23e+09 sec F [N = 1e3] C S1 (N = 1e5)* radiation damages = 1.7e+06 hour time = $k_1 \cdot K_d^{-5/4} \exp(-k_1/T)$ Flux structure Pulse structure 52 (N = 1e6)* M [N = 1e4] Beam pulse length = 1e-2 k1 = 14.2 LISE reduced value Lifetime and Temperature from Beam Current S3 (N = 1e7) *- with compression pay attention for Tools Stationary beam Repetition rate = 5 k2 = 870 default 870 (Carbon) 10.00 EN 194 case of very short pulses. Might be curios Submimation influence ("Stationary beam" [2]) olation target optio te LISE ++ k1(Z) function ? Pulsing beam Rise Time (dT=+1K) = 3.04e-04 sec [a] cm K''(1/2) / sec leg 13 for [2]] = 7.83e+10 delault 7.83e10 (C) k10 = 50 default 50 "Plateau" (dT= -1K) = 7.67e-04 sec [b] k11 = -0.07 delault-0.07 Fall Time (dT=-1K) = 1.46e-02 sec [c] LISEcoel = 1.7 0.1 ... 10 (deft 1.7) Heat Capacity [J / g / K] [3] solating target Range to plot = 1.00e+00 sec Final reduced structure "Stationary beam" 6.52e+29 sec Carbon capacity dependence from T Beam pulse length = 0.01 sec Height & Temperature from Time sublimation = 1.8e+26 hour Repetition rate = 5 Hz Pulsing beam & manually (constant from T) [a] T0 = 290.0K [b] T0 = 1056.1 K, P>0 [c] T0 = 1056.1 K, P=0 solating target Beam on-off time ratio = 5 % c = 0.502 7 Table Height (time) & Lifetime (Beam Current) Calculated beam characteristics (during the pulse) File: Stipper foil settings Shape ? LISE-doc Radius from Interaction Area 8.9e+03 W / cm2 20 Gaussian 🚰 Open 🛛 🍢 Save Beam power lost Dencity of (W/cm2) at the = 224 Reduced beam spot 1.59 puA / cm2 ? Aticles particle flux Uniform ellipse radus(signa) = 1 mm center of target (t=0) (at the center) 9.95e+12 pps / cm2 X Out Area (90.0%) = 14.4 mm2 Uniform rectangle References [1] S.G.Lebedev & A.S.Lebedev, PhysRev ST: A&B 11 (2008) 020401 [2] B.Gikal et al., Preprint P9-2005-110, JINR, Dubna [3] C.Liaw et al., Proceedings of the 1999 PAC, New York, p. 3300

[2] B.Gikal et al., Preprint. P9:2005110, JINR, Dubna

In version 9.2.38 LISE++ takes the reduced value

Flux _{reduced} = Flux _{durin}	g the pulse * Ratio beam on-off_time
---	--------------------------------------

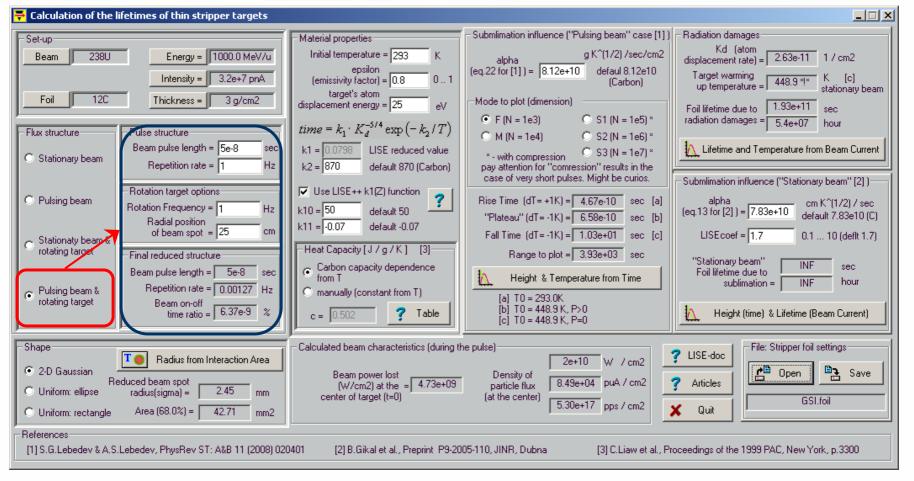

for calculations in "Stationary beam" models

MICHIGAN STATE

HC.

Pulse	= Reduced beam pulse lengt	h [sec]
R	= Rotation target radius	[mm]
ν	= Rotation target frequency	[Hz]
W	= Beam spot horizontal size	[mm]
υ	= Linear velocity	[mm/sec]
	υ = 2 π R ν	

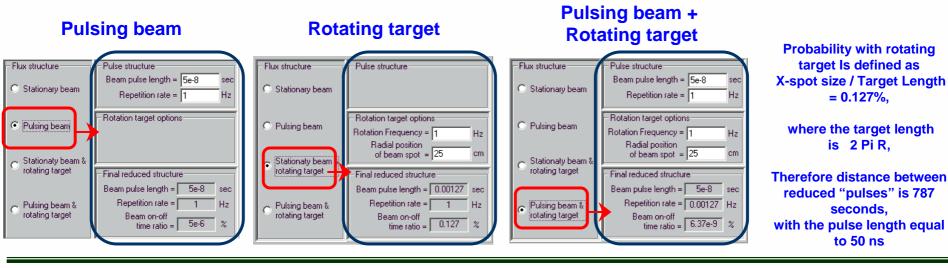
Pulse = W / υ


Where W is

Ratio beam on-off time = Pulse * Rotation target frequency

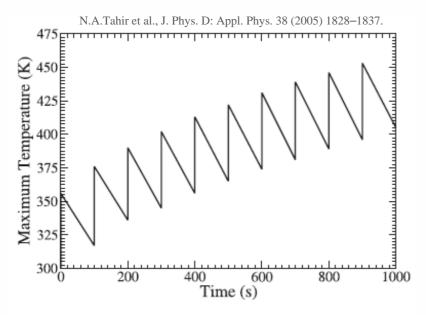
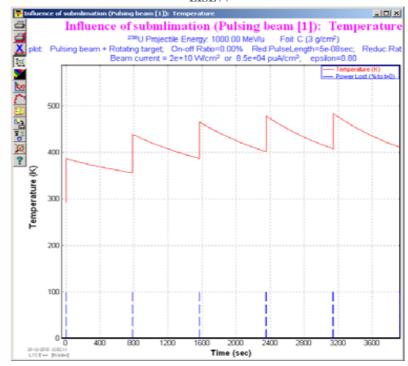
New flux structure: Pulsing beam & rotating target

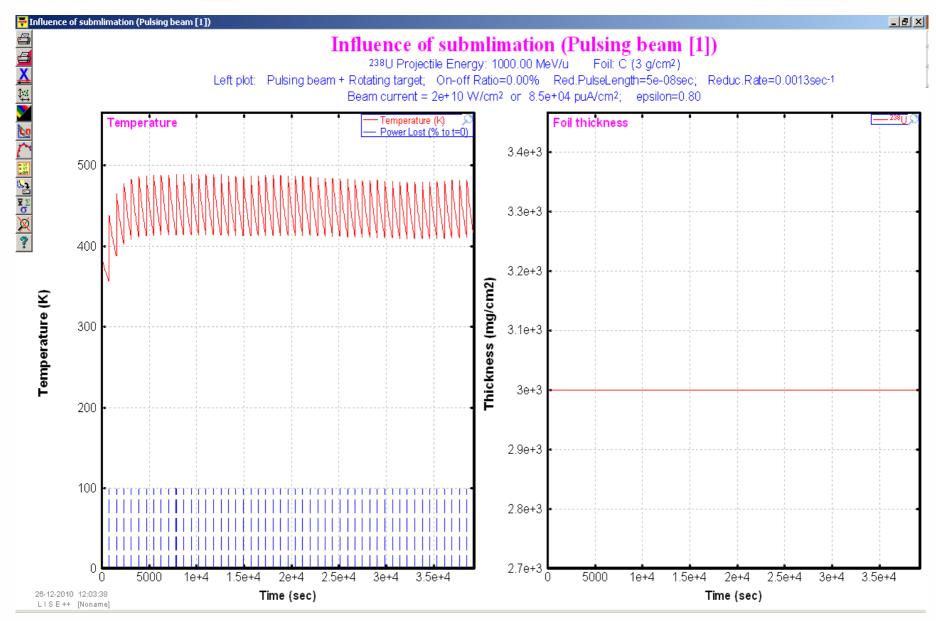
Parameters have been taken from "Calculations of high-power production target and beam dump for the GSI future Super-FRS for a fast extraction scheme at the FAIR Facility", N.A.Tahir et al., J. Phys. D: Appl. Phys. 38 (2005) 1828–1837.


Beam current was set to 2e17 pps in order correspond to 1e10 particle per 50 ns pulse

Use the LISE++ foil file: http://groups.nscl.msu.edu/lise/9_2/9_2_38/GSI.foil

6


Figure 5. (a) Temperature versus time in the target during 1000 irradiations by a 1 GeV u⁻¹ U bunch with $N = 10^{10}$ and $\tau = 50$ ns, $\sigma_x = 1$ mm and $\sigma_y = 6$ mm.

