Production of Fast Rare Ion Beams

1. Introduction to production of Fast Rare Ion Beams
2. Production Area
3. Separation
4. Identification
5. Production of new isotopes
6. LISE++: Utilities
7. Radioactive beam physicist task

Oleg B. Tarasov
NCSL / MSU, USA

26-31/08/2013

Euroschool on Exotic Beams 2013, Dubna
Euroschool on Exotic Beams 2013, Dubna

O.Tarasov@Euroschool2013.JINR.RU
Euroschool on Exotic Beams: 20th anniversary!

EUROSCHEOL ON EXOTIC BEAMS
organized by the "Instituut voor Kern- en Stralingfysica, K.U.Leuven" in the framework of the Human Capital and Mobility Program of the Commission of the European Communities.

Leuven, Belgium September 6 - 10, 1993

paying back tuition loans after 20 years…
“In-Flight Separation of Projectile Fragments” by David J. Morrissey and Brad M. Sherrill

“Isotope Separation On Line and Post Acceleration” by Piet Van Duppen

“Production and acceleration of rare-isotope beams” by Giovanni Bisoffi

ISOL & In-flight methods, ion sources, accelerators et al.
After discussions with some outstanding theorists, professors, who have brilliant ideas for physical motivation of an experiment,

it seems to me, that the good direction of this year lectures is to create a manual how to prepare a technical part of the proposal for the in-flight production and selection experiment.

Step by step from the beginning with the use of examples prepared with the LISE++ code.

What is approach to the “Production of exotic beams” lectures at 2013?
• Production of Exotic Beams
 • Stable 40Ca : $.32/oz, whereas stable 48Ca : $7M/oz
 48Ca is exotic or rare?

• Production of Radioactive Ion Beams
 • Do not speak in public a word “radioactivity” that scares our neighbors. They already have problems with the radon in their basements according to EPA (Environmental Protection Agency). We are not guilty for that!

• Production and acceleration of rare-isotope beams (Euroschool 2012)
 • That is really rare for the In-flight method, mostly is unachievable for the ISOL method

Stable 12C is one of most exotic nuclei ?!

Ab Initio Calculation of the Hoyle State
Evgeny Epelbaum, Hermann Krebs, Dean Lee, and Ulf-G. Mei
cr

The Hoyle state plays a crucial role in the helium burning of stars heavier than our Sun and in the production of carbon and other elements necessary for life. This excited state of the carbon-12 nucleus was postulated by Hoyle as a necessary ingredient for the fusion of three alpha particles to produce carbon at stellar temperatures. Although the Hoyle state was seen experimentally more than a half century ago, nuclear theories have not yet uncovered the nature of this state from first principles. In this Letter we report the first ab initio calculation of the low-lying states of carbon-12 using supercomputer lattice simulations and a theoretical framework known as effective field theory. In addition to the ground state and excited spin-2 state, we find a resonance at ~8503 MeV with all of the properties of the Hoyle state and in agreement with the experimentally observed energy.

Stable 40Ca : $.32/oz, whereas stable 48Ca : $7M/oz

48Ca is exotic or rare?

O.Tarasov@Euroschool2013.JINR.RU

O.Tarasov@Euroschool2013.JINR.RU
Production of Fast Rare Ion Beams

So...

Fast Rare Ion Beams

Please, do not mix with the Facility for Rare Isotope Beams!

Important step forward for FRIB

A note from Thomas Glasmacher

On August 1, 2013, the Department of Energy’s Office of Science (DOE-SC) approved Critical Decision-2 (CD-2), Approve Performance Baseline, and Critical Decision-3a (CD-3a), Approve Start of Civil Construction and Long Lead Procurements, for the Facility for Rare Isotope Beams (FRIB) project. CD-2 formally establishes the cost and schedule for the FRIB project. The Total Project Cost for FRIB is $730M, of which $635.5M will be provided by DOE and $94.5M will be shared by the community. FRIB will be completed by June 2022 and the project is managing to an early completion in December 2020.
Why LISE++? What is it?

"Step by step from the beginning with the use of examples prepared with the LISE++ code"

- The code operates under MS Windows environment and provides a highly user-friendly interface.
- It can be freely downloaded from the following internet addresses: http://lise.nscl.msu.edu
- The program LISE++ is designed to predict the intensity and purity of radioactive ion beams (RIB) produced by In-flight separators.
- The LISE++ name (2002) is borrowed from the well known evolution of the C programming language, and is meant to indicate that the program is no longer limited to a fixed configuration like it was in the original "LISE" program, but can be configured to match any type of device or add to an existing device using the concept of modular blocks.
- The LISE code (1985) was named after the fragment separator LISE.
- The main functions of the program:
 - predict the fragment separator settings necessary to obtain a specific RIB;
 - predict the intensity and purity of the chosen RIB;
 - simulate identification plots for on-line comparison;
 - provide a highly user-friendly graphical environment;
 - allow configuration for different fragment separators.
- The program is constantly expanding and evolving from the feedback of its users around the world.
- The LISE++ package includes configuration files for most of the existing fragment and recoil separators found in the world.
- Many "satellite" tools have been incorporated into the LISE++ framework (will be discussed in Friday)

Reference:
Why LISE++? Where is it used? (1)

“how to prepare a technical part of the proposal?”

So, for the in-flight RIB facilities with the PAC system for proposals LISE++ configurations files have been developed by local fragment separator groups.

A1900 @ NSCL
http://www.nscl.msu.edu/exp/propexp/procedure

National Superconducting Cyclotron Laboratory
Call for Proposals—PAC 37

February 2, 2012

Dear NSCL User:

We invite proposals for beam time to be considered at the next meeting of the NSCL Program

(C) An electronic copy of the LISE++ files used to obtain rare isotope intensity estimates with the official version of LISE++ (referenced in item 3 of the “Notes for PAC37” below). The LISE files can be e-mailed to the A1900 Device Contact at the time of submission of the proposal.
So, for the in-flight RIB facilities with the PAC system for proposals, LISE++ configurations files have been developed by local fragment separator groups.

FRS @ GSI

How to set up the FRS – From SIS extraction of primary beam to isotope identification

LISE @ GANIL

http://pro.ganil-spiral2.eu/laboratory/experimental-areas/lise/technical-informations/lise_configuration/lise/
Why LISE++? Where is it used? (3)

in-flight RIB facilities without the PAC system for proposals

ACCULINNA & COMBAS @ FLNR

MARS @ TAMU

RESOLUT @ FSU
The Content of the Lectures

Production of radioactive ion beams, I
(27 August 14:30-16:00)

1. Introduction to RIB production

Production of radioactive ion beams, II
(28 August 09:30-11:00)

2. Production Area

Recap-session LISE++
(30 August 11:30-13:00)

3. Separation

4. Identification

5. Production of new isotopes

6. LISE++ : Utilities

7. Radioactive beam physicist task
Would like to thank MSU colleagues

D. Bazin, T. Baumann, D.J. Morrissey, A. Stolz,

T. Kubo (RIKEN), H. Weick (GSI)

and especially FRIB Chief Scientist B.M. Sherrill

for providing materials to prepare these lectures

Discussions

with B.M. Sherrill (MSU), D.J. Morrissey (MSU) and A. Gade (MSU)

are very appreciated