

Separator "SHELS" in LISE++

v.9.8.166 from 11/23/14

Separator detail information used to build the LISE++ configuration is courtesy by A.G.Popeko

✤ Introduction

Effective lengths

- ✓ Quadrupoles
- ✓ Dispersive elements
- Dispersive elements settings
 - ✓ Electrostatic dipoles C1 and C2
 - ✓ Magnetic dipoles D22 1 and D22 2
 - ✓ Magnetic dipole D8
- ✤ Apertures & Slits

Calibrations •

- ✤ Reaction choice
 - ✓ Charge state model
 - ✓ Fusion residual (SHE region)

✤ Configurations

- ✓ Experimental (logbook) settings
- ✓ Brho values by LISE++
- \checkmark Q5 field value modification
- ✓ Obtaining angular acceptance
- ✓ Final version for the LISE++ package
- ✤ Angular acceptance
- ✤ Beam suppression

Introduction

"VASSILISSA" electrostatic separator "SHELS" separator http://flerovlab.jinr.ru/flnr/vassilissa.html

http://www-win.gsi.de/tasca14/program/contributions TASCA14/TASCA14 contribution Popeko.pdf

The "SHELS" configuration in LISE⁺⁺ is so called "extended" configuration with effective quadrupole lengths and use of the "S/E" new construction property. For details on these subjectsplease use the next links:

Configurations

http://lise.nscl.msu.edu/9_8/LISE3/Extended%20configurations%20at%20LISE++.pdf

Effective quad lengths

http://lise.nscl.msu.edu/9_8/QuadEffLengths.pdf

S/E construction property http://lise.nscl.msu.edu/9_8/SE_blocks.pdf

Effective lengths

Original

			"iron	" total	eff.length	delta/2
target				0		
drift	Distance between target and slit 1	DTS1	350	350	350	
slits		Slits1	0	350		
drift	Distance between slit 1 and quadrupole 1	DS1Q1	70	420	35	
Quad1		Quad1	310	730	380	35
drift	Distance between irons of quadrupoles I and I+1	DQiQk	270	1000	200	
Quad2		Quad2	310	1310	380	35
drift	Distance between irons of quadrupoles I and I+1	DQiQk	270	1580	200	
Quad3		Quad3	310	1890	380	35
drift	Distance between quadrupole 3 and C1	DQ3C1	630	2520	516.5	
ElectricDipole	Condensator's 1 plate length	LC1	500	3020	657	78.5
drift	Distance between C1 and dipole 1	DC1D1	561	3581	422.9	
Dipole	Length of dipole 1	LD1	500	4081	619.2	59.6
drift	Distance between D1 and velocity slit SV	DD1SV	365	4446	305.4	
slits1		slits SV	0	4446		
dirift	Distance between SV and D2	DSVD2	365	4811	305.4	
Dipole	Length of dipole 2	LD2	500	5311	619.2	59.6
drift	Distance between dipole 2 and C2	DD2C2	561	5872	422.9	
ElectricDipole	Condensator's 2 plate length	LC2	500	6372	657	78.5
drift	Distance between C2 and quadrupole 4	DC2Q4	630	7002	516.5	
Quad4		Quad4	310	7312	380	35
drift	Distance between irons of quadrupoles I and I+1	DQiQk	270	7582	200	
Quad5		Quad5	310	7892	380	35
drift	Distance between irons of quadrupoles I and I+1	DQiQk	270	8162	200	
Quad6		Quad6	310	8472	380	35
drift	Distance between Q6 and S3	DQ6D3	2115	10587	2036	
Dipole		LD3	500	11087	588	44
drift		DQ6D3-DS	1058	12145	1014	
slits 3			0	12145		
drift		DS3Det-D	390	12535	390	
slits 4			0	12535		
drift			110	12645	110	
detectors			TOTAL	12645	12645	
1						

Values used in LISE⁺⁺

(cells marked white background)

	"iron"	total	eff.length	delta/2	half-app,cm
		0			
DTS1	350	350	350		
Slits1	0	350			
DS1Q1	70	420	35		
Quad1	310	730	380	35	
DQiQk	270	1000	200		
Quad2	310	1310	380	35	
DQiQk	270	1580	200		
Quad3	310	1890	380	35	
DQ3C1	630	2520	516.5		551.5
LC1	500	3020	657	78.5	
DC1D1	561	3581	422.9		
LD1	500	4081	619.2	59.6	
DD1SV	365	4446	305.4		
slits SV	0	4446			
DSVD2	365	4811	305.4		
LD2	500	5311	619.2	59.6	
DD2C2	561	5872	422.9		
LC2	500	6372	657	78.5	
DC2Q4	630	7002	516.5		551.5
Quad4	310	7312	380	35	
DQiQk	270	7582	200		
Quad5	310	7892	380	35	
DQiQk	270	8162	200		
Quad6	310	8472	380	35	
DQ6D3	2115	10587	2036		
LD3	500	11087	588	44	
DQ6D3-DS	1058	12145	1014		
	0	12145			
DS3Det-DS	390	12535	390		
	0	12535			
	110	12645	110		
TOTAL	12645	12645	12645		

LISE⁺⁺ does not support effective dipole lengths, so it has to be set manually

LD1 = 500; {Length of dipole 1 in mm } LD1eff = 650; {Effective length of dipole 1 in mm } SDip1 = 0; {Radial shift of dipole 1 axis in mm}

LD2 = 500; {Length of dipole 2 in mm } LD2eff = 650; {Effective length of dipole 2 in mm } SDip2 = 0; {Radial shift of dipole 2 axis in mm}

Based on the logbook information

LOGBOOK (14.04.2014)						
Br=	0.77	Tm				
ID22-8=	508.5	Α				
B from cal	ibration					
B=	0.47147	т				
Radius frn	n Brho/B					
radius=	1.63319	mm				
Alpha=	22.00	deg				
Alpha=	0.3840	Rad				
Length= 2R*sin(a/2)						
Length=	623.3	mm				

Finally used in LISE⁺⁺ after Br recalculation

0.7622	Tm
508.5	А
ibration	
0.47147	т
1.616646	
619.2	mm
0.385396	Rad
22.082	Deg
0.623049	m
	508.5 ibration 0.47147 1.616646 619.2 0.385396 22.082

Eff.Length= 2R*sin(a/2)

D22_1		
Dispersive bloc	sk — —]
C Brho	0.76221	+ Tm
СВ	0.47147	+ T
€ 1	508.5	÷ A
- Bend Sector-		
Radius =	1.61665	m
Angle =	22.08	deg
Length =	0.6230	m

Effective lengths : Quads

MICHIGAN STATE UNIVERSITY LISE++

Used in simulations:

6 identical quads

LQ = 310; {Length of quadrupole iron in mm} LQeff = 380; {Effective length of quadrupole in mm}

Q1 (pole 4) effective length on R rel.=0

I	B, kG	Leff,mm
202	1.08	382.55
303	1.615	381.7
505	2.68368	380.45
707	3.7504	381.3
909	4.8124	382.25
	average	381.65

Effective Lengths measurement

MICHIGAN STATE

Quad 1-6
a (Half-aperture) [cm] 10
iron length [mm] 310
effective in the code [mm] 380
Leff = L + coef * a
coef (calculation)= 0.700
For information :
The same coefficient value 0.7 has been
obtained in the case of NSCL A1900 quads http://lise.nscl.msu.edu/9_8/QuadEffLengths.pdf#page=5
<u>map.///ise.nsei.nsei.edu/o_o/kuudeneengins.pui#puge=o</u>
Quad 1 : multipole effective length
Note
C Equal to Block Length (L) Effective length is used for optical matrix calcuation, Block length is used for
C Set manually by user
Calculated : Leff = L + a*coef
where 'L'': block (physical) length [m] 'a'': half-aperture [m] vecommended
Neighbour blocks have to be drifts. Their effective
lengths will be recalculated in order to compensate this effective quad length.
Obtained from calibration file Leff= f(B)
V Ok X Quit ? Help

Electrostatic Dipoles C1 & C2 settings

Magnetic Dipoles D22_1 & D22_2 settings

Magnetic Dipole D8 settings

MICHIGAN STATE

Apertures & Slits

culations Utilities 1D-Plot 2D-Plot Databases Help		
Optics Goodies	×	Tune spectrometer for setting fragment on beam axis Tune spectrometer for setting fragment at middle of slit
Calibrations Transmission and rate Optimum Target Optimum Target-Wedge and Wedge-Wedge configurations	•	Manual recalcualtion of e-blocks matrices (only for Experts!) Update matrices linked with COSY files Envelope plot
Brho scanning Optimum charge state combination		First order matrix elements : PLOT First order matrix elements : View & Print
Monte Carlo calculation of transmission	•	Quad & Dipole settings : EDIT
Calculators	•	Quad & Dipole settings : View & Print
		Brho(Erho) Analyzer

Note: Slits 4 are temporary not used due to large transmission cut of fragment of interest. It should be discussed!

			rst- and Second-C	order Matrix Elements for	an Ideal Magnet								S	lits				and	ertu	Iro	
Quads & Dipoles se	ttings																	apr			
! FILE: C:_Pope	ko\SHELS.lpp																				
1 2 N Block name or	3 Kind of Block	4 Start (m)	5 Length (m)	6 DriftMode Angle(*)*	7 B0(kG)	8 Br-corrsp Br-dip *	9 Rapp(cm) R(m)*		11 2nd order	12 Calc Mode	13 AngAc mode		15 Xmin slit	16 Xmax slit	17 Ymin slit	18 Ymax slit	19 Appert shape		21 Xmax limit	22 Ymin limit	23 Ymax limit
1. tuning 2. DTS1 3. slits 1 4. DS1Q1 5. Quad 1 6. dqiqk 7. Quad 2 8. dqiqk 9. Quad 3	Dipole Drift Drift Drift Drift Drift Drift Drift	$0.000 \\ 0.000 \\ 0.350 \\ 0.420 \\ 0.730 \\ 1.000 \\ 1.310 \\ 1.580 $	0.000 0.350 0.000 0.310 0.270 0.310 0.270 0.310 0.270 0.310 0.270 0.310	+0.0 * standard SLITS standard multipole standard multipole	+5.022	0.7489 * 0.7489 0.7489 0.7489	3.00 * 10.00 10.00 10.00	0.00 * 0.38 0.38 0.38	- yes yes	1 1	HV 	rectn ellps rectn rectn rectn rectn rectn	-35	+35	-35	+35	ellps ellps ellps ellps ellps ellps ellps ellps	-90 -90 -90 -90 -90 -90 -90 -90	+90 +90 +90 +90 +90 +90 +90 +90 +90	-90 -90 -90 -90 -90 -90 -90 -90	+90 +90 +90 +90 +90 +90 +90 +90
10. dq3c1 11. C1 12. dc1d1 13. D22_1 14. dd1sv 15. slits SV 16. dsvd2 17. D22_2	Drift ElecDip Drift Drift Drift Drift Dift Dipole	1.890 2.442 3.101 3.524 4.147 4.452 4.452 4.757	0.551 0.659 0.423 0.623 0.305 0.000 0.305 0.623	standard -8.0 * standard +22.1 * standard SLITS standard -22.1 *	+2.239 179.2kV +2.496 +2.496	0.7489 0.7489* 0.7489* 0.7489*	1.62 *	0.38 0.66* 0.62* 0.62*	yes - yes yes	I	 	rectn rectn rectn rectn rectn rectn rectn rectn rectn	-100	+100	-67	+67	ellps rectn rectn rectn ellps rectn rectn rectn	-90 -100 -215 -215 -215 -215 -215	+90 +100 +215 +215 +215 +215 +215	-90 -175 -175 -67 -67 -67 -67	+90 +175 +175 +67 +67 +67 +67 +67
18. dd2c2 19. C2 20. dc2q4 21. Quad 4 22. dqiqk 23. Quad 5 24. dqiqk 25. Quad 6 26. dq6d3 27. D8 28. drift	Drift ElecDip Drift Drift Drift Drift Drift Drift Drift Dipole Drift	5.380 5.803 6.463 7.014 7.324 7.904 8.174 8.174 8.484 10.599 11.189	0.423 0.659 0.551 0.310 0.270 0.310 0.270 0.310 2.115 0.590 1.058	<pre>standard +8.0 * standard multipole standard multipole standard multipole standard +7.3 * standard</pre>	179.2kV +0.699 −3.300 +2.358 +2.496	0.7489 * 0.7489 0.7489 0.7489 0.7489 *	4.72 * 10.00 10.00 10.00 4.63 *	0.66* 0.38 0.38 0.38 0.59*	- yes yes yes yes	1 1 1		rectn rectn rectn rectn rectn rectn rectn rectn rectn rectn					rectn rectn ellps ellps ellps ellps ellps ellps ellps ellps ellps	-216 -100 -90 -90 -90 -90 -90 -90 -90 -95 -95	+216 +100 +90 +90 +90 +90 +90 +90 +90 +95 +95	-67 -175 -90 -90 -90 -90 -90 -90 -90 -70 -70	+67 +175 +90 +90 +90 +90 +90 +90 +90 +70 +70
29. slits 3 30. drift 31. slits 4 32. drift	Drift Drift Drift Drift	12.247 12.247 12.637 12.637	0.000 0.390 0.000 0.110	SLITS standard SLITS standard							 	rectn rectn rectn rectn	-40	+40	-40	+40	rectn rectn ellps rectn	-40	+40	-40	+40

! symbol "*" after values denotes, that these values belongs to Dipole settings, where column names are found in the second row of titles, and also marked by "*"

Solumn 08: "Br-corrsp" - quadrupole(sextupole) field is scaled to this Brho-value; "Br-dip*" - dipole magnetic rigidity [T*m] ! Column 09: "Rapp(cm)" - radius(half-aperture) of quadrupole(sextupole) in cm; "R(m)-dip*" - dipole radius [m] ! Column 10: "L_eff(m)" - effective length of quadrupole(sextupole) in cm; "R(m)-dip*" - dipole radius [m] ! Column 12: "Calc mode" - only for quadrupole(sextupole); 0 - no actions; 1 - recalculate automatically B(field), keep matrix;

 $\begin{array}{c} 2 - \text{recalculate automatically the matrix, keep B(field)} \\ \text{Column 13: "AngAcc mode" - "H(V)" : horizontal(vertical) angular acceptance will be applied for this block and the second second$

! Columns 15-18,20-23: slits and aperture(limit) sizes in [mm]. If slit or aperture(limit) does not have action, then its size value is absent OT, 11/23/14, East Lansing

Calibrations

Calibration data of all 6 quad, m-dipoles D22-1, D22-2 and D8 have been transported to LISE++ calibrated files and linked to the SHELS configuration to be used in the corresponding dialogs.

Calibration files are located in the directory "calibrations\FLNR".

Q6 Q5 Q4 Q3 Q2 Q1 D8 D22_1 D22_1	cal cal cal cal cal cal cal cal	151 11/21/2014 232 11/21/2014 166 11/21/2014 314 11/21/2014 329 11/21/2014 315 11/21/2014 576 11/03/2014 277 11/03/2014 257 11/03/2014
D22_2	cal	257 11/03/2014

4.46376

4.75929

5.05419

5.34773

5.64015

5.87045

808.3

858.7

909.1

959.5

999.6

Reaction Choice

²⁰⁸Pb(⁵⁰Ti,2n)²⁵⁶Rf experiment used to create configuration (logbook 14.04.2014)

Energy = 237 MeV Target ²⁰⁸PbS (0.35mg Pb)

Target	
	State Dimension Angle © Solid © mg/cm2 & micron Calculate © Gas © g/cm2 & mm 0 degrees Thickness at 0 degrees © 0.60542797 micron Effective Thickness © 0.406 mg/cm2 0.406
	Thickness defect Absorbed Dose
Compound dictionary comp" - use this material for fusion compound and to calculate cross-sections in the case of Fission reactions and AA	Qut (Slits) d / Range (beam) 0.017 OK Cancel Energy Loss in the target box [KW] 0.00402 Use in Q-state calculations Atoms / cm2 2.04e+18

Proc	duction Mechanism		_	×						
ſ										
	^{A1} Z1 ∪↓ ^{A0} Z0	Reactions	yields	nally calculate for the next eactions						
		Settings	C Projectile Fragmentation							
		Settings	Fusion -> Residual							
	A2Z2	Settings	C Fusion -> Fission							
	↓	Settings	C Coulomb fission							
	•	Settings	C Abrasion-Fission							
	. ^{(*} Z3)		C Two Body Reactions							
	<i>Fusion-Residual</i> A0 + A1 = A2 ≥ A3		C ISOL mode							
		🔲 Make default	🗸 ок 🗶 с	ancel ? Help						

5 - [< 15AMeV] G.Schiwietz, P.Grande, NIM B175-177 (2001) 125-131

Schiwietz's model has been chosen for this reaction with setting charge state 20+

According to the logbook $\langle q \rangle = 19.5$, sig(q) = 2.44

Question: The Sulfur component has been taken into account ?

Reaction choice: Fusion residual (SHE region)

¹ Department of Chemistry, University of California, Berkeley, California 94720, U.S.A.

² Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, U.S.A.

 ${}^{^{3}}\!Abteilung \, Kernchemie, \, Gesellschaft für \, Schwerionenforschung \, mbH, \, 64291 \, Darmstadt, \, Germany$

Index of /9_8/SHELS

	Name	Last modified Size Description
	Parent Directory	-
	SHELS.1cn	23-Nov-2014 17:08 153K
	SHELS.1pp	23-Nov-2014 17:08 182K
http://lise.nscl.msu.edu/9 8/SHELS/	SHELS.xlsx	23-Nov-2014 19:15 49K
<u>1111.0.111.0.111.0.000/9_0/01121.0/</u>	SHELSinLISE.pdf	23-Nov-2014 19:14 3.6M
	SHELS v9.1pp	21-Nov-2014 18:18 173K
	SHELS v9 brho.lpp	21-Nov-2014 18:21 173K
	SHELS v9 brho quad5.1pp	23-Nov-2014 17:08 182K
	SHELS v9 brho quad5 acceptar	nce.lpp 21-Nov-2014 18:17 173K

The LISE⁺⁺ package already contains the SHELS configuration and calibration files. Please use v.9.8.166

- ✓ Experimental (logbook) settings
- ✓ Brho values by LISE++
- \checkmark Q5 field value modification
- ✓ Obtaining angular acceptance
- ✓ Final version for the LISE++ package

<u>SHELS v9.1pp</u> <u>SHELS v9 brho.1pp</u> <u>SHELS v9 brho_quad5.1pp</u> <u>SHELS v9 brho_quad5 acceptance.1pp</u> <u>SHELS.1pp_SHELS.1cn</u>

Configurations : Experimental (logbook) settings

MICHIGAN STATE UNIVERSITY LISE++

Multipole: Quad 1 SHELS v9.1pp Magnetic Multipole Settings QUADrupole SEXTupole L_eff (effective length) 0.38 m mode: <Calc> [c=0.70] 14.04. 2014 5.11196 B (field at pole tip) 0 kG Radius (half-aperture) 10 10 cm 110 corpense 3-48 50 Ti (237 How + 208 PB SO. 35 mg PB) \$ Rf + 24 Multipole fixed Brho-value 0.7622 Tm < E> = (42.5) 29>=19.5 29=2.44 (E_c=45.9) E_c=21.5 corresponding to the setting fragment Fix current value UC8"= 304.6 · ty x · E = 304.6 · 2. 17.9 · ty 8" IQ1 = 868.6 A Calculate 2nd order matrix elements B(I) calibration 7 47 = 798. 1 A Allow remote matrices recalculation +868.60 A IQ3 = 387.4 A = 163,72.01405=932 KV Multipole: Quad 2 Magnetic Multipole Settings QUADrupole SEXTupole I+8 = 429.5A L_eff (effective length) 0.38 m mode: <Calc> [c=0.70] -4.66283 0 B (field at pole tip) kG be double Radius (half-aperture) 10 10 cm Multipole fixed Brho-value 0.7622 Tm corresponding to the setting fragment Fix current value Calculate 2nd order matrix elements B(I) calibration Allow remote matrices recalculation -798.10 A C1 S. Multipole: Quad 3 Electrostatic Dipole Settings Magnetic Multipole Settings Separation plane QUADrupole SEXTupole Horizontal - 0 O Vertical L_eff (effective length) 0.38 m mode: <Calc> [c=0.70] B (field at pole tip) 2.27922 0 kG E (electric field) 932 KV/m U C1 = U C2Radius (half-aperture) 10 10 cm O (voltage) 186.4 KV Multipole fixed Brho-value 0.7622 Tm 4.4 Electric rigidity. MJ/C corresponding to the setting fragment Fix current value Magnetic rigidity 0.76369 Tm Calculate 2nd order matrix elements B(I) calibration (corresponds to the setting fragment) Allow remote matrices recalculation +387.40 A

MICHIGAN STATE UNIVERSITY LISE++

Allow remote matrices recalculation

+302.70 A

Configurations : Experimental (logbook) settings

MICHIGAN STATE UNIVERSITY LIS

25			•		ometer for setting ometer for setting									SHELS V
tions	d and a			Manual reca	lcualtion of e-blo	ocks matrices (o	only for Experts!)							
nission an um Targe			,		rices linked with (COSY files								
	• t-Wedge and Wedge	-Wedge configurati	ons	Envelope pl	ot									
canning					natrix elements : F									
-	e state combination				natrix elements : \									
	culation of transmiss	ion	•		ole settings : EDIT ole settings : Viev									
ators			•	Brho(Erho)		v a r nin								
					-	Matrix Element	s for an Ideal Magnet			Т	he sectors	with differen	nt <mark>rigidi</mark> t	ies
_										///	/			
	Quadrupole:	s and dipoles f	ast editting		-84	÷-								
[Block	Given Name	Start(m)	Length(m)	B0(kG)	Br(Tm)cor/	*real DriftM/*Angle F	Rapp(cm)/*R(Leff(m)/*Ldip(m)	2 nd order	CalcMatr/*Z-Q	AngAcc,Apps,Slits	COSY_link	SE
	S 🔲 Drift	dqiqk	0.730	0.2700			standard		c_0.2000			HV		е
- 11	🍳 🕕 Drift	Quad 2	1.000	0.3100	-4.6628	0.7637	QUAD	10.0000	c_8.3800	yes	1	HV		е
- 11	S 🔲 Drift	dqiqk	1.310	0.2700			standard		c_0.2000			HV		е
- 11	🍳 🕕 Drift	Quad 3	1.580	0.3100	+2.2792	0.7637	QUAD	10.0000	c_0.3800	yes	1	HV		е
- 11	S 🔲 Drift	dq3c1	1.890	0.5515			standard	/ /	c_0.5165			HV		е
	E ElecDip	C1	2.442	0.6592	186.4kV	0.7637	* -8.0	* 4.7210	× 0.6592		* 84	- HV		E
	S 🔲 Drift	dc1d1	3.101	0.4229		\equiv	standard					HV		е
- 11	Dipole	D22_1	3.524	0.6230	+4.7147	* 0.7622	+22.1	* 1.6166	* 0.6230	yes	× 84	HV		Е
	S 🔲 Drift	dd1sv	4.147	0.3054			standard	· /				HV		е
	S 🔲 Drift	slits SV	4.452	0.0000			SLITS					HV		е
	S 🔲 Drift	dsvd2	4.452	0.3054			standard					HV		е
	Dipole	D22_2	4.757	0.6230	-4.7147	* 0.7622	× 22.1	* 1 .6166	* 0.6230	yes	* 84	HV		Е
	S 🔲 Drift	dd2c2	5.380	0.4229		\square	standard	/				HV		е
	E ElecDip	C2	5.803	0.6592	186.4kV	0.7637	× +8.0	* 4.7210	* 0.6592		* 84	HV		Е
	S 🔲 Drift	dc2q4	6.463	0.5515			standard		c_0.5165			HV		е
	Q 🕕 Drift	Quad 4	7.014	0.3100	+0.7130	0.7637	QUAD	10.0000	c_0.3800	yes	1	- HV		e
	S Drift	dqiqk	7.324	0.2700			standard		c_0.2000			HV		e
		Quad 5	7.594	0.3100	-2.3315	0.7637	QUAD	10.0000	c_0.3800	yes	1	- HV		e
		dqiqk	7.904	0.2700			andard		c 0.2000	,		- HV		e
		Quad 6	8.174	0.3100	+2.4003	0.7637	QUAD	10.0000	c_0.3800	yes	1	- HV		e
		dq6d3	8.484	2.1150	12.1000		standard	10.0000	c_2.0800	,		- HV		e
		D8	10.599	0.5880	+1.7000	* 0.7845	* +7.3	× 4.6150	× 0.5880	ves	* 84	- HV		E
				0.0000	11.1000	0.1040	11.00	4.0100	0.0000	300	04	117		-

First order matrix elements

Configurations : Experimental (logbook) settings

	Ŧ statistics: 256Rf	-		-		-	-	A	nalytic	al solu	tion					
	256Rf Spont	taneous fis	sion (Z=10)4, N=152)	Rut	therfordiu	n									
	All reactions total iso and Overall isotope tra			pps ६												
Overall	Q1 (tuning) Q2 (C1)		27 27	26 26	25 25	24 24	23 23	22 22	21 21	20 20	19 19	18 18	17 17	16 16	15 15	14 14
transmission	Q3 (D22_1) Q4 (D22_2)		27 27	26 26	25 25	24 24	23 23	22 22	21 21	20 20	19 19	18 18	17 17	16 16	15 15	14 14
45.1%	Q5(C2) Q6(D8) Reaction		27 27 FusRes	26 26 FusRes	25 25 FusRes	24 24 FusRes	23 23 FusRes	22 22 FusRes	21 21 FusRes	20 20 FusRes 7		18 18 FusRes	17 17 FusRes	16 16 FusRes	15 15 FusRes	14 14 FusRes
	Ion Production Rate Total ion transmission	(pps) (%)	5.9e-4 0.017	3.23e-3 0.095	1.31e-2 0.385	3.92e-2 1.154	8.92e-2 2.629	1.6e-1 4.7	2.29e-1 6.743	7.89	0.59e-1 1.621	2.09e-1 6.155	1.43e-1 4.204	8.31e-2 2.449	4.15e-2 1.222	1.78e-2 0.525
	Total: this reaction X-Section in target	(pps) (mb)	1.55e+0 2.67e-4	1.55e+0 2.67e-4	1.55e+0 2.67e-4	1.55e+0 2.67e-4	1.55e+0 2.67e-4	1.55e+0 2.67e-4	1.55e+0 2.67e-4	1.55e+0 2.67e-4	1.55e+0 2.67e-4	1.55e+0 2.67e-4	1.55e+0 2.67e-4	1.55e+0 2.67e-4	1.55e+0 2.67e-4	1.55e+0 2.67e-4
	Target X space transmission Y space transmission	(응) (응) (응)	0.629 100 100	1.51 100 100	3.14 100 100	5.68 100 100	8.94 100 100	12.22 100 100	14.49 100 100	14.9 100 100	13.3 100 100	10.32 100 100	6.95 100 100	4.07 100 100	2.08 100 100	0.922 100 100
	Unreacted in material Q (Charge) ratio	(*) (%) (%)	100 0.629	100	100 3.14	100	100 8.94	100	100 100 14.49	100 100 14.9	100 100 13.31	100	100	100 100 4.07	100	100
	Unstopped in material	(%)	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Analytical solution

Envelope for ²⁵⁶Rf FusRes ^{20+ 20+ 20+ 20+ 20+ 20+ 20+}

MC solution

dialog. (Pay attention there for the checkbox

MICHIGAN STATE

Configurations : Experimental (logbook) settings

MICHIGAN STATE

256Rf : MC Transmission Plot - Envelope (all)

after "drift": L [m]: window projection --- ⁵⁰Ti (4.7 MeV/u) + PbS (0.41 mg/cm²); Transmitted Fragment ²⁵⁶Rf^{20+, 20+} (FusRes); Optics C dp/p=10.14% ; Brho(Tm): 0.7637, 0.7622, 0.7622, 0.7845

All disperse optical blocks were set to Brho = 0.7489 Tmcalculated by LISE⁺⁺ to be optimal for ²⁵⁶Rf²⁰⁺

SHELS v9 brho.lpp

📮 Quadrupole:	s and dipoles fa	ast editting		-84	H 1	+ -							
Block	Given Name	Start(m)	Length(m)	B0(kG)	Br(Tm)cor/*real	DriftM/*Angle	Rapp(cm)/*R(Leff(m)/*Ldip(m)	2 nd order	CalcMatr/*Z-Q	AngAcc,Apps,Slits	COSY_link	SE
Q 🕕 Drift	Quad 1	0.420	0.3100	+5.0127	0.7489	QUAD	10.0000	c_0.3800	yes	1	- HV		е
S 🔲 Drift	dqiqk	0.730	0.2700			standard		c_0.2000			- HV		е
Q 🕕 Drift	Quad 2	1.000	0.3100	-4.5723	0.7489	QUAD	10.0000	c_0.3800	yes	1	HV		е
S 🔲 Drift	dqiqk	1.310	0.2700			standard		c_0.2000			- HV		е
Q 🕕 Drift	Quad 3	1.580	0.3100	+2.2350	0.7489	QUAD	10.0000	c_0.3800	yes	1	- HV		е
S 🔲 Drift	dq3c1	1.890	0.5515			standard		c_0.5165			- HV		е
E ElecDip	C1	2.442	0.6592	179.2kV	0.7489	* -8.0	* 4.7210	* 0.6592	-	* 84	HV		Е
S 🔲 Drift	dc1d1	3.101	0.4229			standard					HV		е
Dipole	D22_1	3.524	0.6230	+4.6322	* 0.7489	* +22.1	* 1.6166	* 0.6230	yes	* 84	- HV		Е
S 🔲 Drift	dd1sv	4.147	0.3054			standard					HV		е
S 🔲 Drift	slits SV	4.452	0.0000			SLITS					HV		е
S 🔲 Drift	dsvd2	4.452	0.3054			standard					- HV		е
Dipole	D22_2	4.757	0.6230	-4.6322	* 0.7489	* -22.1	* 1.6166	* 0.6230	yes	* 84	- HV		Е
S 🔲 Drift	dd2c2	5.380	0.4229			standard					- HV		е
E ElecDip	C2	5.803	0.6592	179.2kV	0.7489	* + 8.0	* 4.7210	* 0.6592		* 84	HV		Е
S 🔲 Drift	dc2q4	6.463	0.5515			standard		c_0.5165			HV		е
🍳 🕕 Drift	Quad 4	7.014	0.3100	+0.6992	0.7489	QUAD	10.0000	c_0.3800	yes	1	- HV		е
S 🔲 Drift	dqiqk	7.324	0.2700			standard		c_0.2000			HV		е
Q 🕕 Drift	Quad 5	7.594	0.3100	-2.2863	0.7489	QUAD	10.0000	c_0.3800	yes	1	HV		е
S 🔲 Drift	dqiqk	7.904	0.2700			standard		c_0.2000			HV		е
🍳 🕕 Drift	Quad 6	8.174	0.3100	+2.3537	0.7489	QUAD	10.0000	c_0.3800	yes	1	HV		е
S 🔲 Drift	dq6d3	8.484	2.1150			standard		c_2.0800			HV		е
Dipole Dipole	D8	10.599	0.5880	+1.6227	* 0.7489	* +7.3	* 4.6150	× 0.5880	yes	* 84	HV		Е
					\smile								

Configurations : Brho values by LISE⁺⁺

Overall transmission 54.3%

256Rf Spont	taneous fi	ssion (Z=1)	04, N=152)	Ru	therfordiu	n						SHE	LS v9	brho.	pp
All reactions total iso			nos												
and Overall isotope tra	an3m133101	54.294	-												
Q1(tuning)		27	26	25	24	23	22	21	20	19	18	17	16	15	14
Q2 (C1)		27	26	25	24	23	22	21	20	19	18	17	16	15	14
Q3 (D22 1)		27	26	25	24	23	22	21	20	19	18	17	16	15	14
Q4 (D22 2)		27	26	25	24	23	22	21	20	19	18	17	16	15	14
Q5 (C2)		27	26	25	24	23	22	21	20	19	18	17	16	15	14
Q6(D8)		27	26	25	24	23	22	21	20 0 0	01/9	18	17	16	15	14
Reaction		FusRes	FusRes	FusRes	FusRes	FusRes	FusRes	FusRes	FusRes		FusRes	FusRes	FusRes	FusRes	FusRes
Ion Production Rate	(pps)	4.18e-3	1.47e-2	4.06e-2	8.94e-2	1.61e-1	2.38e-1	2.94e-1	3.069-1	2.7e-1	2e-1	1.24e-1	6.41e-2	2.8e-2	1.05e-2
Total ion transmission	(%)	0.123	0.434	1.195	2.634	4.728	7.006	8.661	9.02	7.94	5.883	3.646	1.89	0.825	0.308
Total: this reaction	(pps)	1.84e+0	1.84e+0	1.84e+0	1.84e+0	1.84e+0	1.84e+0	1.84e+0	1.840+0	1.84e+0	1.84e+0	1.84e+0	1.84e+0	1.84e+0	1.84e+0
X-Section in target	(mb)	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-4
Target	(%)	0.631	1.51	3.14	5.69	8.95	12.23	14.49	14.9	13.3	10.31	6.94	4.06	2.07	0.919
X space transmission	(%)	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Y space transmission	(%)	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Unreacted in material	(%)	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Q (Charge) ratio	(%)	0.631	1.51	3.14	5.69	8.95	12.23	14.49	14.9	13.3	10.31	6.94	4.06	2.07	0.919
Unstopped in material	(%)	100	100	100	100	100	100	100	100	100	100	100	100	100	100
tuning	(%)	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96
X angular transmission	(%)	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Y angular transmission	(%)	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96
DTS1	(%)	100	100	100	100	100	100	100	100	100	100	100	100	100	100

Analytical solution

Envelope for ²⁵⁶Rf_FusRes ²⁰⁺ 20+ 20+ 20+ 20+ 20+ ⁵⁰Ti (4.7 MeV/u) + PbS (0.41 mg/cm²); Settings on ²⁵⁶Rf^{20+.20+}; Config: DSSSSSSSSESDSSSDSESSSSSSS... dp/p=10.14%; Brho(Tm): 0.7489, 0.7489, 0.7489

Still large lost in the slits3

Transmission through the slits 3 about 62% for the setting ion (vertical cut)

slits 4 were not used

It's necessary to make vertical focusing at the end. See matrix elements on page 21

MICHIGAN STATE

Overal Transmisson Q5, B(kG) -2.2863 54.30% 68.40% -3 70.20% -3.1 Let's use Q5 B-field equal to -3.2 72.01% 73.83% -3.3 -4kG (-685A) -3.4 75.39% 76.92% -3.5 -3.6 78.09% -3.7 79.22% -3.8 80.03% -3.9 80.57% -4 80.70% -4.1 80.82% -4.2 80.61%

-

SHELS v9 brho quad5.1pp

Ana	lytica	l sol	ution
-			

Overall transmission 80.7%

statistics: 256Rf	_		-		-	-									_
256Rf Spont	aneous f	ission (Z=1)	D4, N=152)	Ru	therfordiu	n									
All reactions total iso and Overall isotope tra															
and overall isotope the	11311133101	1 00.037	<u> </u>												
Q1(tuning)		27	26	25	24	23	22	21	20	19	18	17	16	15	14
Q2 (C1)		27	26	25	24	23	22	21	20	19	18	17	16	15	14
Q3 (D22 1)		27	26	25	24	23	22	21	20	19	18	17	16	15	14
Q4 (D22 2)		27	26	25	24	23	22	21	20	19	18	17	16	15	14
Q5 (C2)		27	26	25	24	23	22	21	20	19	18	17	16	15	14
Q6 (D8)		27	26	25	24	23	22	21	20 4 🤈	10/	18	17	16	15	14
Reaction		FusRes	FusRes	FusRes	FusRes	FusRes	FusRes	FusRes	FusR S	4u/10s	FusRes	FusRes	FusRes	FusRes	FusRes
Ion Production Rate	(pps)	6.3e-3	2.45e-2	7.14e-2	1.57e-1	2.67e-1	3.73e-1	4.44e-1	4.56e-1	4.07e-1	3.11e-1	1.78e-1	4.28e-2	1.54e-3	1.41e-
Total ion transmission	(%)	0.185	0.722	2.104	4.613	7.87	10.99	13.067	13.441	11.992	9.173	5.233	1.262	0.045	4.16e-
Total: this reaction	(pps)	2.74e+0	2.74e+0	2.74e+0	2.74e+0	2.74e+0	2.74e+0	2.74e+0	2171210	2.74e+0	2.74e+0	2.74e+0	2.74e+0	2.74e+0	2.74e+
X-Section in target	(mb)	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-4	2.67e-
Target	(*)	0.631	1.51	3.14	5.69	8.95	12.23	14.49	14.9	13.3	10.31	6.94	4.06	2.07	0.919
X space transmission	(%)	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Y space transmission	(%)	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Unreacted in material	(%)	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Q (Charge) ratio	(%)	0.631	1.51	3.14	5.69	8.95	12.23	14.49	14.9	13.3	10.31	6.94	4.06	2.07	0.919
Unstopped in material	(%)	100	100	100	100	100	100	100	100	100	100	100	100	100	100
tuning	(%)	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96
X angular transmission	(%)	100	100	100	100	100	100	100	100	100	100	100	100	100	100
Y angular transmission	(%)	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96	97.96

The Quad field minimization utility is expected to be developed in LISE++ in 2015!!

Transmission through the slits 3 about 92% for the setting ion (vertical cut)

slits 4 were not used

Configurations : Q5 field value modification

UNIVERSITY LISE++

MICHIGAN STATE

First order matrix elements

SHELS v9 brho quad5.1pp

OT, 11/23/14, East Lansing

Configurations : Q5 field value modification

OT, 11/23/14, East Lansing

28

10

10

12

SHELS v9 brho quad5.1pp

Settings with Brho and Q5 field modifications

SHELS v9.1pp

Experimental (logbook) settings

UNIVERSITY LISE++

MICHIGAN STATE

Analytical solution

SHELS v9 brho quad5.1pp

MC solution

²⁵⁶Rf charge states at the Slits 4 position

MICHIGAN STATE UNIVERSITY LISE++

SHELS v9 brho quad5.lpp

Configurations : Q5 field value modification

MICHIGAN STATE SITY R

🗧 Statistics

N dist	ribution	x-mean	x-max	y-max	deviation	FWHM	area
05 256Rf 06 256Rf 07 256Rf 08 256Rf 09 256Rf 10 256Rf	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+4.2281e+01 +4.2273re+01 +4.2673e+01 +4.2542e+01 +4.2542e+01 +4.2542e+01 +4.2477e+01 +4.217e+01 +4.2154e+01 +4.2052e+01 +4.2052e+01 +4.2052e+01 +4.1971e+01	+4 2289±+01 +4 3348±+01 +4 3348±+01 +4 3348±+01 +4 2995±+01 +4 2995±+01 +4 2642±+01 +4 1936±+01 +4 1584±+01 +4 1584±+01 +4 1231±+01	1.051e-01 1.613e-03 6.157e-02 3.775e-02 3.775e-02 8.702e-02 1.026e-01 9.418e-02 7.267e-02 1.029e-02 1.029e-02 3.746e-04 3.509e-07	1.461e+00 1.435e+00 1.442e+00 1.442e+00 1.452e+00 1.459e+00 1.459e+00 1.461e+00 1.462e+00 1.459e+00 1.459e+00 1.459e+00 1.445e+00	4.348±+00 3.970±+00 4.056±+00 4.207±+00 4.207±+00 4.337±+00 4.337±+00 4.337±+00 4.312±+00 4.230±+00 4.230±+00 4.179±+00	4.5625e-01 6.2951e-03 2.4524e-02 7.1427e-02 1.5657e-01 3.7304e-01 3.7304e-01 3.1139e-01 4.0706e-01 3.1139e-01 4.2844e-02 1.5357e-03 1.4114e-06

MC solution

Configurations : Q5 field value modification

SHELS v9 brho quad5.lpp

Y'vs Y @ the SV slits 256Rf²⁰⁺

2nd order optics

1st order optics

Configurations : Q5 field value modification

10

6

after "slits 4": L [m]

8

12

2

4

-120 L

OT, 11/23/14, East Lansing

S NSCL

MICHIGAN STATE UNIVERSITY LISE++

SHELS v9 brho quad5.lpp

Analytical solution

Fusion-Residues products

Total rate is 8.5 pps / 1 puA

Configurations : Q5 field value modification

Analytical solution

Fusion-Residues + Fusion-Fission products

File (link) : <u>SHELS_v9_brho_quad5_fission.lpp</u>

SHELS.lpp SHELS.lcn are based on SHELS v9 brho quad5.lpp

🖶 Open	×
Look in: 🕕 dubna	▼ 🗢 🗈 💣 💷 ▼
Name	Date modified 🔷
F SHELS.Ipp	≡ 11/23/2014 7:08 PM
File name:	++ working file B fied: 11/23/2014 7:08 PM
Files of type: LISE++ files (*.lpp)	

🖶 Open	and all a	X
Look <u>i</u> n: 🚺	Dubna	- 🗲 💼 🖶
Name	*	Date modified
SHELS.I	:n	≡ 11/23/2014 5:08 PM
∢ File <u>n</u> ame:	III SHELS.lcn	Type: LISE++ configuration file Size: 153 KB Date modified: 11/23/2014 5:08 PM
Files of type:	, LISE++ Configurations (*.lcn)

Angular Acceptance

File: SHELS v9 brho_quad5 acceptance.lpp

Angular Acceptance of the 1s-t half of separator

Angular acceptance $X' = \pm 93$ mrad, $Y' = \pm 46$ mrad (**Rectangle** shape) has been applied to the "Tuning" dipole.

It's important for Analytical transmission calculations ("Distribution" method). The Angular acceptance option can be turned off in the Monte Carlo case.

⁵⁰Ti : Monte Carlo Transmission Plot

Beam suppression : after C1

Beam suppression : after D22_1

