* Introduction
* Effective lengths
\checkmark Quadrupoles
\checkmark Dispersive elements
* Dispersive elements settings
\checkmark Electrostatic dipoles C1 and C2
\checkmark Magnetic dipoles D22_1 and D22_2
\checkmark Magnetic dipole D8
\& Apertures \& Slits
* Calibrations
* Reaction choice
\checkmark Charge state model
\checkmark Fusion residual (SHE region)
* Configurations
\checkmark Experimental (logbook) settings
\checkmark Brho values by LISE++
\checkmark Q5 field value modification
\checkmark Obtaining angular acceptance
\checkmark Final version for the LISE++ package
* Angular acceptance
* Beam suppression
"VASSILISSA" electrostatic separator "SHELS" separator

ASSA (SHELS) Simulation of ion trajectories

The "SHELS" configuration in LISE ${ }^{++}$is so called "extended" configuration with effective quadrupole lengths and use of the "S/E" new construction property. For details on these subjectsplease use the next links:

- Configurations
- Effective quad lengths
http://lise.nscl.msu.edu/9 8/LISE3/Extended\%20configurations\%20at\%20LISE++.pdf
- S/E construction property
http://lise.nscl.msu.edu/9 8/QuadEffLengths.pdf
S/E construction property http://lise.nscl.msu.edu/9 8/SE blocks.pdf

(())
 Effective lengths

Original

			"iron"	total	eff.length	delta/2
target				0		
drift	Distance between target and slit 1	DTS1	350	350	350	
slits		Slits1	0	350		
drift	Distance between slit 1 and quadrupole 1	DS1Q1	70	420	35	
Quad1		Quad1	310	730	380	35
drift	Distance between irons of quadrupoles I and I +1	DQiak	270	1000	200	
Quad2		Quad2	310	1310	380	35
drift	Distance between irons of quadrupoles I and I +1	DQiQk	270	1580	200	
Quad3		Quad3	310	1890	380	35
drift	Distance between quadrupole 3 and C1	DQ3C1	630	2520	516.5	
ElectricDipole	Condensator's 1 plate length	LC1	500	3020	657	78.5
drift	Distance between C 1 and dipole 1	DC1D1	561	3581	422.9	
Dipole	Length of dipole 1	LD1	500	4081	619.2	59.6
drift	Distance between D1 and velocity slit SV	DD1SV	365	4446	305.4	
slits1		slits SV	0	4446		
dirift	Distance between SV and D2	DSVD2	365	4811	305.4	
Dipole	Length of dipole 2	LD2	500	5311	619.2	59.6
drift	Distance between dipole 2 and C2	DD2C2	561	5872	422.9	
ElectricDipole	Condensator's 2 plate length	LC2	500	6372	657	78.5
drift	Distance between C2 and quadrupole 4	DC2Q4	630	7002	516.5	
Quad4		Quad4	310	7312	380	35
drift	Distance between irons of quadrupoles I and I +1	DQiQk	270	7582	200	
Quad5		Quad5	310	7892	380	35
drift	Distance between irons of quadrupoles 1 and $1+1$	DQiQk	270	8162	200	
Quad6		Quad6	310	8472	380	35
drift	Distance between Q6 and S3	DQ6D3	2115	10587	2036	
Dipole		LD3	500	11087	588	44
drift		DQ6D3-D¢	1058	12145	1014	
slits 3			0	12145		
drift		DS3Det-D:	390	12535	390	
slits 4			0	12535		
drift			110	12645	110	
detectors			TOTAL	12645	12645	

Values used in LISE++

(cells marked white background)

	"iron"	total	eff.length	delta/2	half-app,cm
		0			
DTS1	350	350	350		
Slits1	0	350			
DS1Q1	70	420	35		
Quad1	310	730	380	35	
DQiQk	270	1000	200		
Quad2	310	1310	380	35	
DQiQk	270	1580	200		
Quad3	310	1890	380	35	
DQ3C1	630	2520	516.5		551.5
LC1	500	3020	657	78.5	
DC1D1	561	3581	422.9		
LD1	500	4081	619.2	59.6	
DD1SV	365	4446	305.4		
slits SV	0	4446			
DSVD2	365	4811	305.4		
LD2	500	5311	619.2	59.6	
DD2C2	561	5872	422.9		
LC2	500	6372	657	78.5	
DC2Q4	630	7002	516.5		551.5
Quad4	310	7312	380	35	
DQiQk	270	7582	200		
Quad5	310	7892	380	35	
DQiQk	270	8162	200		
Quad6	310	8472	380	35	
DQ6D3	2115	10587	2036		
LD3	500	11087	588	44	
DQ6D3-DS	1058	12145	1014		
	0	12145			
DS3Det-D§	390	12535	390		
	0	12535			
	110	12645	110		
TOTAL	12645	12645	12645		

LISE++ does not support effective dipole lengths, so it has to be set manually

D22-2 22^{0} (S-trajectory) $\mathrm{R}=1577+160=1737 \mathrm{~mm}$

Original information

LD1 $=500$; \{Length of dipole 1 in mm$\}$
LD1eff $=650$. $\{$ Effective length of dipole 1 in mm$\}$
SDip1 = 0; \{Radial shift of dipole 1 axis in mm\}

LD2 $=500$; \{Length of dipole 2 in mm \}
LD2eff $=650$; $\{$ Effective length of dipole 2 in mm$\}$
SDip2 = 0; \{Radial shift of dipole 2 axis in mm\}

Based on the logbook information

LOGBOOK (14.04.2014)		
$\mathrm{Br}=$	0.77	Tm
ID22-8=	508.5	A
B from calibration		
$\mathrm{B}=0.47147$		T
Radius frm Brho/B		
radius=	1.63319	mm
Alpha=	22.00	deg
Alpha=	0.3840	Rad
Length=	$2 \mathrm{R}^{*} \sin (\mathrm{a} / 2$	
Length=	623.3	mm

Finally used in LISE ${ }^{++}$ after Br recalculation

Br recalc $=$	0.7622	Tm
ID22-8	$=508.5$	A
B from calibration		
$\mathrm{B}=0.47147$		T
radius $=$	1.616646	
Length $=$	619.2	mm
Alpha $=$	0.385396	Rad
Alpha $=$	22.082	Deg
Arc $=0.623049$	m	

Effective lengths: Quads

Used in simulations:

6 identical quads

LQ =310; \{Length of quadrupole iron in mm \}
LQeff $=380$; $\{$ Effective length of quadrupole in mm$\}$

Q1 (pole 4) effective length on R rel. $=0$

I	B, kG	Leff,mm
202	1.08	382.55
303	1.615	381.7
505	2.68368	380.45
707	3.7504	381.3
909	4.8124	382.25
	average	381.65

Effective lengths: Quads

Effective Lengths measurement

Q6 (pole4) eff. length

Q3 (pole 3) effective length

Q2 (pole3) effective length

Effective lengths: Quads

	Quad 1-6
a (Half-aperture) [cm]	10
iron length [mm]	310
effective in the code [mm]	$\mathbf{3 8 0}$
Leff $=$ L+ coef * a	
coef (calculation) $=$	0.700

For information :
The same coefficient value 0.7 has been obtained in the case of NSCL A1900 quads http://lise.nscl.msu.edu/9 8/QuadEffLengths.pdf\#page=5

Multipole: Quad 1

Magnetic Dipoles D22_1 \& D22_2 settings

Magnetic Dipole D8 settings

Optics
Goodies
Calibrations
Transmission and rate
Optimum Target
Optimum Target-Wedge and Wedge-Wedge configurations
Brho scanning
Optimum charge state combination
Monte Carlo calculation of transmission
Calculatorts

Tune spectrometer for setting fragment on beam axis
Tune spectrometer for setting fragment at middle of slit
Manual recalcualtion of e-blocks matrices (only for Experts)
Manual recalcualtion of e-blocks matrices matrices linked with coSy files
Envelope plot
First order matrix elements : PLOT
First order matrix elements: View \& Print
Quad \& Dipole settings: EDIT
Quad \& Dipole settings: View \& Print
Bho(Erho) Analyze
The First- and Second-Order Matrix Elements for an Ideal Magnet

Note: Slits 4 are temporary not used due to large transmission cut of fragment of interest.
It should be discussed!

$\overline{7}$ Quads \& Dipoles settings

slits

aperture

$\frac{L E: C: \ P o p e k o \backslash S H E L S . l p p}{12}$
name Kind

1. tuning

! Column 08: "Br-corrsp" - quadrupole(sextupole) field is scaled to this Brho-value; "Br-dip*"- dipole magnetic rigidity [T*m]
! Column 09: "Rapp(cm)" - radius(half-aperture) of quadrupole(sextupole) in cm; "R(m)-dip*" - dipole raidus [m]
 Column 12: "Calc mode" - only for quadrupole(sextupole): 0 - no actions; 1 - recalculate automatically B (field), keep matrix;

2-recalculate automatically the matrix, keep B(field
Column 13: "AngAcc mode" - "H(V)" : horizontal(vertical) angular acceptance will be applied for this block
OT, 11/23/14, East Lansing

MICHIGAN STATE
NIVERSITY
LIS E

Calibration data of all 6 quad, m-dipoles D22-1, D22-2 and D8 have been transported to LISE ${ }^{++}$calibrated files and linked to the SHELS configuration to be used in the corresponding dialogs.

Calibration files are located in the directory "calibrations\FLNR".

$\square \mathbf{Q 6}$
Q5
Q4
Q3
Q2
Q1
D8
D22_1
D22_2

cal	$15111 / 21 / 2014$	
cal	232	$11 / 21 / 2014$
cal	166	$11 / 21 / 2014$
cal	314	$11 / 21 / 2014$
cal	329	$11 / 21 / 2014$
cal	315	$11 / 21 / 2014$
cal	576	$11 / 03 / 2014$
cal	277	$11 / 03 / 2014$
cal	$25711 / 03 / 2014$	

232 11/21/2014
166 11/21/2014
314 11/21/2014
329 11/21/2014
315 11/21/2014
277 11/03/2014
257 11/03/2014

Reaction Choice

${ }^{208} \mathrm{~Pb}\left({ }^{50} \mathrm{Ti}, 2 \mathrm{n}\right){ }^{256} \mathrm{Rf}$ experiment used to create configuration (logbook 14.04.2014)

Energy $=237 \mathrm{MeV}$
Target ${ }^{208} \mathrm{PbS}(0.35 \mathrm{mg} \mathrm{Pb})$

5 - [< 15AMMeV] G.Schiwietz, P.Giande, NIM B175-177 (2001) 125-131

Schiwietz's model has been chosen for this reaction with setting charge state $20+$

According to the logbook $<q>=19.5, \operatorname{sig}(q)=2.44$

Question: The Sulfur component has been taken into account?

Reaction choice: Fusion residual (SHE region)

- Probabilly for compound nucleus formation $P_{_}\{C N\}$
- Take into account the Probabilly for compound nucleus \lceil formation P_\{CN\} according to V.Zagrebaev \& W.Greiner, PRC78, 034610 (2008)

Use in the code	$\begin{aligned} & \text { Fission Barrier } \\ & \text { at } L=0 \end{aligned}$	$\begin{aligned} & \text { Fission Barrier } \\ & \text { at } L x=\square \\ & 10\end{aligned}$	G.S. Energy at Lx (MeV)
C 0. "Bafit" - A.J.Sierk, PRC33(1986)2039	5.27	0	0
C 1- "FisRot" - S. Cohen et al. An.P 82(1974)	6.77	6.56	0.31
C 2-LDM -W.Myers.W.Swiatecki,NP81(1966)	7.07		
C 3-FILE: A.Mamdouh et al,NPA679(2001)337	5.2	C in	
C 4-FILE: Experimental bariers	.	max (in,out)	
C 5-FILE: P.Moller et al. LANL-UR-08-4190	5.65		
\checkmark Ok X Cancel	? Help		Make default

Reaction choice: Fusion residual (SHE region)

The influence of projectile neutron number in the ${ }^{208} \mathrm{~Pb}\left({ }^{48} \mathrm{Ti}, n\right){ }^{255} \mathrm{Rf}$ and $\left.{ }^{208} \mathrm{~Pb}^{50}{ }^{50} \mathrm{Ti}, n\right){ }^{257} \mathrm{Rf}$ reactions
I. Dragojevic ${ }^{1,2}$, K.E. Gregorich ${ }^{2}$, Ch. E. Düllmann ${ }^{1,2,3}$, M.A. Garcia ${ }^{1,2}$, J.M. Gates ${ }^{1,2}$,

$$
\text { S.L. Nelson }{ }^{1,2} \text {, L. Stavsetra }{ }^{2} \text {, R. Sudowe }{ }^{2,,^{*}} \text {, and H. Nitsche }{ }^{1,2}
$$

${ }^{1}$ Department of Chemistry, University of California, Berkeley, California 94720, U.SA.
${ }^{2}$ Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, U.S.A.
${ }^{3}$ Abteilung Kernchemie, Gesellschaft für Schwerionenforschung mbH, 64291 Darmstadt, Germany

Excitation Energy (MeV)

http://lise.nscl.msu.edu/9 8/SHELS/

Index of $/ \mathbf{9} \mathbf{8} /$ SHELS

Name	Last modified	Size Description
- Parent Directory		-
? 7 SHELS 1 lc	23-Nov-2014 17:08	153 K
? SHELS. 1 pp	23-Nov-2014 17:08	182 K
? SHELS xlsx	23-Nov-2014 19:15	49K
或 SHELSinLISE.pdf	23-Nov-2014 19:14	3.6 M
? SHELS v9.1pp	21-Nov-2014 18:18	173 K
? SHELS v9 brho.lpp	21-Nov-2014 18:21	173 K
Y SHELS v9 brho quad5.lpp	23-Nov-2014 17:08	182 K
(7) SHELS v9 brho quad5 acceptance.lpp	21-Nov-2014 18:17	173 K

The LISE ${ }^{++}$package already contains the SHELS configuration and calibration files. Please use v.9.8.166
\checkmark Experimental (logbook) settings
\checkmark Brho values by LISE++
\checkmark Q5 field value modification
\checkmark Obtaining angular acceptance
\checkmark Final version for the LISE++ package

SHELS v9.lpp
SHELS v9 brho.lpp
SHELS v9 brho quad5.lpp
SHELS v9 brho quad5 acceptance.lpp
SHELS.lpp SHELS.lcn

Configurations : Experimental (logbook) settings

Multipole: Quad 1

SHELS v9.1pp

Magnetic Multipole Settings			
QUAADrupole ${ }^{\text {SEXTupole }}$			
L_eff (effective length) mode: <Calc〉[c=0.70]			m
B (field at pole tip)	5.11196	0	kGcm
Radius (hall-aperture)	10	10	
Multipole fixed Brho-value corresponding to the setting fragment 0.7622 Tm Fix current value			
V Calculate 2nd order matix	elements	B(I) calibration	
V Allow remote matrices re	culation	+868.60 A	

Multipole fixed Brho-value corresponding to the setting fragment	0.7622 Fix current value
Calculate 2 nd order matrix elements Allow remote matrices recalculation	$\mathrm{B}(\mathrm{l})$ calibration .798 .10 A

SHELS v9.1pp

Tune spectrometer for setting fragment on beam axis
Tune spectrometer for setting fragment at middle of slit
Manual recalcualtion of e-blocks matrices (only for Experts!)
Update matrices linked with COSV files
Envelope plot
First order matrix elements : PLOT
First order matrix elements: View \& Print

- Quad \& Dipole settings : EDIT
- Quad \& Dipole settings : View \& Print

Brho(Erho) Analyzer
The First- and Second-Order Matrix Elements for an Ideal Magnet

SHELS v9.1pp

Optics

Goodies

Calibration

Transmission and rate
Optimum Target
Optimum Target-Wedge and Wedge-Wedge configurations Brho scanning
Optimum charge state combination
Monte Carlo calculation of transmission
Calculators

The sectors with different rigidities

Configurations : Experimental (logbook) settings
First order matrix elements
${ }^{50} \mathrm{Ti}(4.7 \mathrm{MeV} / \mathrm{u})+\mathrm{PbS}\left(0.41 \mathrm{mg} / \mathrm{cm}^{2}\right) ;$ Settings on ${ }^{256} \mathrm{Rf}^{20+} .{ }^{20+}$; Config: DSSSSSSSSSESDSSSDSESSSSSSS... $\mathrm{dp} / \mathrm{p}=10.14 \%$; Brho(Tm): $0.7637,0.7622,0.7622,0.7845$

Configurations : Experimental (logbook) settings

Fi statistics: 256Rf

256Rf \quad Spontaneous fis
$\begin{array}{l}\text { All reactions total isotope rate } \\ \text { and Overall isotope transmission }\end{array}$

| and Overall isotope transmission 45.789 | op |
| :--- | :--- | :--- |

Overall transmission 45.1\%

Analytical solution

${ }^{256}$ Rf : MC Transmission Plot - Envenpe (only passed) Continue ${ }^{50} \mathrm{Ti}(4.7 \mathrm{MeV} / \mathrm{u})+\mathrm{PbS}\left(0.41 \mathrm{mg} / \mathrm{cm}^{2}\right)$; Transmitted Fragment 256R220+. + (FusRes); Optics Order: 1 AngAccept: ON; Bounds: Off, "dprift"- last block for MC calc; no gates; Configi: DSSssssssssesdsssDsesssssss..

Configurations : Experimental (logbook) settings

${ }^{256}$ Rf : MC Transmission Plot - Envelope (all)
${ }^{50} \mathrm{Ti}(4.7 \mathrm{MeV} / \mathrm{u})+\mathrm{PbS}\left(0.41 \mathrm{mg} / \mathrm{cm}^{2}\right)$; Trans mitted Fragment ${ }^{256} \mathrm{Rf}^{20+.20+}$ (FusRes); Optics Order: $\mathrm{dp} / \mathrm{p}=10.14 \%$; Brho(Tm): $0.7637,0.7622,0.7622,0.7845$

MC solution

Angular Acceptance \& Bounds
 Γ Use fixed angular acceptances

\checkmark Use physical limits (aperture) inside blocks to calculate fragment transmission

For block apertures LISE++ uses the slit limits accessible from the Block Cut \& Acceptance dialog. (Pay attention there for the checkbox

only for the ENVELOPE mode

- Show trajectories of all fragments fincluding unselected by fragment-separator)
\sqrt{V} Take into account thickness defect of materials
- Take into account losses due to reactions in materials
∇_{\checkmark} Include charge state calculations
in the total transmission $\times x$
${ }^{* x}$ time consumed options
Assume the reaction takes place at the middle of target
Г for Angular distributions
Γ for Momentum distributions
* these two distributions are correlated for fusion and fission reactions
${ }^{256}$ Rf : MC Transmission Plot - Envelope (all)
${ }^{50} \mathrm{Ti}(4.7 \mathrm{MeV} / \mathrm{u})+\mathrm{PbS}\left(0.41 \mathrm{mg} / \mathrm{cm}^{2}\right)$; Transmitted Fragment ${ }^{256} \mathrm{R}^{20+} 20+$ (FusRes); Optics Order: AngAccept: Off, Bounds: ON; "drif" \quad dp $=10.14 \%$; Brho(Tm): $0.7637,0.7622,0.7622,0.7845$

256Rf: MC Transmission Plot - Eny elope (all)
after "drift": L[m]: window projection --. $50 \mathrm{Ti}(4.7 \mathrm{MeV} / \mathrm{u})+\mathrm{PbS}\left(0.41 \mathrm{mg} / \mathrm{cm}^{2}\right)$; Trans mitted Fragment ${ }^{256} \mathrm{Rf} 20+.20+$ (FusRes); Optics C 0.762 , 0.7845

All disperse optical blocks were set to Brho $=0.7489$ Tm
SHELS v9 brho.lpp
calculated by LISE ${ }^{++}$to be optimal for ${ }^{256} \mathrm{Rf}^{20+}$

구 Quadrupole	and dipoles fa	st editting											-
Block	Given Name	Start(m)	Length(m)	B0.kG)	Brifmlaci/real	DiftM//Angle	Rapp $(\mathrm{cm}) / \times$ R (...	Leff(m)/2.Ldip(m)	2 nd order	CalcMat//Z.Q	AngAcc,Apps.Slits	COSY_link	SE
${ }^{\text {Q }}$ (1) Ditt	Quad 1	0.420	0.3100	+5.0127	0.7489	QUAD	10.0000	c_0.3800	yes	1	-. HV		e
${ }^{\text {S }} \square$ Drit	dqiqk	0.730	0.2700			standard		c_0.2000			.- HV .	.	e
${ }^{\text {Q }}$ 成D Ditt	Quad 2	1.000	0.3100	-4.5723	0.7489	QUAD	10.0000	c_0.3800	yes	1	.- HV .-	.	e
${ }^{\text {S }}$ - Ditit	dqiqk	1.310	0.2700			standard		c_0.2000			- HV .-	.	e
${ }^{\text {Q [i] D }}$ Ditt	Quad 3	1.580	0.3100	+2.2350	0.7489	QUAD	10.0000	c_0.3800	yes	1	- HV -	.	e
${ }^{5}$ D Dift	dq3c1	1.890	0.5515			standard		c_0.5165			- HV -	.	e
E.ElecDip	C1	2.442	0.6592	179.2kV	0.7489	* 8.0	* 4.7210	${ }^{*} 0.6592$		* 84	- HV	-	E
${ }^{\text {S }}$ D Ditt	dc1d1	3.101	0.4229			standard					- HV	.	e
D- Dipole	D22_1	3.524	0.6230	+4.6322	$\times 0.7489$	* 22.1	*1.6166	${ }^{*} 0.6230$	yes	* 84	-. HV --	.	E
S Ditt	ddisv	4.147	0.3054			standard					- HV .-	.	e
${ }^{\text {S }} \square$ Dirit	slits SV	4.452	0.0000			SLITS					-. .- HV	.	e
${ }^{5}$ - Ditit	dsvd2	4.452	0.3054			standard					-. HV .-	.	e
D-2 Dipole	D22_2	4.757	0.6230	-4.6322	$\times 0.7489$	* 22.1	${ }^{*} 1.6166$	*0.6230	yes	*84	- HV .-	.	E
${ }^{\text {S }}$ D Ditt	dd2c2	5.380	0.4229			standard					- HV	.	e
E.ElecDip	C2	5.803	0.6592	179.2kV	0.7489	* +8.0	* 4.7210	*0.6592	.	*84	- HV -	.	E
S D Ditt	dc294	6.463	0.5515			standard		c_0.5165			- HV -	.	e
${ }^{\text {Q cid }}$ Diit	Quad 4	7.014	0.3100	+0.6992	0.7489	QUAD	10.0000	c_0.3800	yes	1	- HV --	.	e
${ }^{\text {S }}$ D Ditt	dqiqk	7.324	0.2700			standard		c_0.2000			-. HV --	.	e
Q [i] Diit	Quad 5	7.594	0.3100	2.2863	0.7489	QUAD	10.0000	c_0.3800	yes	1	-. HV --	.	e
${ }^{\text {S }}$ D Dift	dqiqk	7.904	0.2700			standard		c_0.2000			HV	.	e
${ }^{\text {Q }}$ (1) Dilt	Quad 6	8.174	0.3100	+2.3537	0.7489	QUAD	10.0000	c_0.3800	yes	1	- HV .-	.	e
${ }^{\text {S }}$ D Diit	dq6d3	8.484	2.1150			standard		c_2.0800			- HV --	.	e
D-dipole	D8	10.599	0.5880	+1.6227	$\times 0.7489$	* +7	*4.6150	* 0.5880	yes	*84	- HV -	.	E

Configurations : Brho values by LISE ${ }^{++}$

Analytical solution

Envelope for ${ }^{256}$ Rf FusRes 20+ 20+ 20+ 20+ 20+ 20+
${ }^{50} \mathrm{Ti}(4.7 \mathrm{MeV} / \mathrm{u})+\mathrm{PbS}\left(0.41 \mathrm{mg} / \mathrm{cm}^{2}\right)$; Settings on ${ }^{256} \mathrm{Rf}^{20+}+20+$; Config: DSSSSSSSSSESDSSSDSESSSSSSS

$$
\mathrm{dp} / \mathrm{p}=10.14 \% ; \text { Brho (Tm): } 0.7489,0.7489,0.7489,0.7489
$$

Still large lost in the slits3
Transmission through the slits 3 about 62\% for the setting ion (vertical cut)
slits 4 were not used
It's necessary to make vertical focusing at the end. See matrix elements on page 21

Configurations : Q5 field value modification

Analytical solution

The Quad field minimization utility is expected to be developed in LISE++ in 2015!!

Transmission through the slits 3 about 92\%
for the setting ion (vertical cut)
slits 4 were not used

Configurations: Q5 field value modification

First order matrix elements
SHELS v9 brho quad5.lpp
${ }^{50} \mathrm{Ti}(4.7 \mathrm{MeV} / \mathrm{u})+\mathrm{PbS}\left(0.41 \mathrm{mg} / \mathrm{cm}^{2}\right)$; Settings on ${ }^{256} \mathrm{Rf}^{20+\ldots}{ }^{20+}$; Config: DSSSSSSSSSESDSSSDSESSSSSSS...
$\mathrm{dp} / \mathrm{p}=67.77 \%$; Brho(Tm): $0.7489,0.7489,0.7489,0.7489$

Configurations : Q5 field value modification

SHELS v9 brho quad5.lpp

Settings with Brho and Q5 field modifications

SHELS v9.1pp

Experimental (logbook) settings

Configurations : 05 field value modification

SHELS v9 brho quad5.lpp

Settings with Brho and Q5 field modifications

Envelope for ${ }^{256}$ Rf FusRes ${ }^{20+}$ 20+20+20+20+20+

SHELS v9.1pp

Experimental (logbook) settings

Envelope for ${ }^{256}$ Rf FusRes ${ }^{20+}$ 20+ $20+20+20+20+$

Isotope Group : Monte Carlo Yield Plot
${ }^{50} \mathrm{Ti}(4.7 \mathrm{MeV} / \mathrm{u})+\mathrm{PbS}\left(0.41 \mathrm{mg} / \mathrm{cm}^{2}\right)$; Transmitted Fragment ${ }^{256} \mathrm{R} 20+.20+$ (FusRes); Optics Order: dp/p=67.77\% ; Brho(Tm): 0.7489, 0.7489, 0.7489, 0.7489
AngAccept: Off, Bounds: ON; "slits 4" - last block for MC calc; no gates; Config: DSSSSSSSSSESDSSSDSE

Isotope Group : Monte Carlo Yield Plot
${ }^{50} \mathrm{Ti}(4.7 \mathrm{MeV} / \mathrm{u})+\mathrm{PbS}\left(0.41 \mathrm{mg} / \mathrm{cm}^{2}\right)$; Transmitted Fragment ${ }^{256 \mathrm{R} 202+.20+}$ (FusRes); Optics Order: dp/p $=67.77 \%$; Brho(Tm): $0.7489,0.7489,0.7489,0.7489$
AngAccept: Off, Bounds: ON; "slits 4" - last block for MC calc; no gates; Config: DSSSSSSSSSESDSSSDSE

Configurations: Q5 field value modification

Analytical solution
SHELS v9 brho quad5.lpp

7 Statistics														
$\mathrm{dp} / \mathrm{p}=67.77 \%$: $\mathrm{Brho}(\mathrm{Tm}): 0.7489,0.7489,0.7489,0.7489$ Plot 1														
N	distr	ribution		x-mean										
01	256 Rf	$20+20+$		+4.2281e+01		+4.2289e+01		051e-01		$461 \mathrm{e}+00$		4. $348 \mathrm{e}+00$		562
02	256Rf	$27+27+$	27+	+4.2737e+01		+4.3348e+01		1.613e-03		$1.435 \mathrm{e}+00$		3.970 e+00		
031		$26+26+$		+4.2673e+01		+4.3348e+01				1. $442 \mathrm{e}+00$		4.056e+00		$2.4524 \mathrm{e}-02$
04	${ }^{256 \mathrm{Rff}}$	25+25+	$25+$	${ }^{+4.2607 e+01}$		+4.3348e+01		$1.753 \mathrm{e}-02$		1. $447 \mathrm{e}+00$		4.144e+00		$7.1427 \mathrm{e}-02$
06	${ }_{256 \mathrm{Rf}}$	23+ $23+$		${ }_{+4.2477 e+01}$		${ }_{+}^{+4.2995 e+01}$		6. $341 \mathrm{e}-02$		1. $456 \mathrm{e}+00$		$4.258 \mathrm{e}+00$		$2.6714 \mathrm{e}-01$
07		$22+22+$	$22+$	+4.2411e+01		+4.2642e+01		8.702e-02		1.459e+00		$4.308 \mathrm{e}+00$		$3.7304 \mathrm{e}-01$
0	${ }_{25} 5 \mathrm{RF}$	$21+21+$	+	${ }^{+4.2346 e+01}$		$+4.2642 e+01$		1.026e-01		1. $461 \mathrm{e}+00$		$4.337 e+00$		4.85
09	256 Rf	$19+19+$	$19+$	${ }^{+4.2217 e+01}$		+4.1936e+01		9. $418 \mathrm{e}-02$		1. $462 \mathrm{e}+00$		$4.337 e+00$		4. $0706 \mathrm{e}-01$
	${ }_{256 \mathrm{Rff}}^{256}$	18+18+	18+	+4.2154e+01		$+4.1584 e+01$ $+4.1584 e+01$		7.267e-02		1.461e+00		$4.312 \mathrm{e}+00$ $4.271 \mathrm{e}+00$		3. $1139 \mathrm{e}-01$
12	256 Rf	$16+16+$	$16+$	+4.2031e+01		${ }^{+4.1584 e+01}$		1.029e-02		$1.456 \mathrm{e}+00$		$4.230 \mathrm{e}+00$		$4.2844 \mathrm{e}-02$
13	${ }^{256 \mathrm{Rf}}$	15+ 15+	15+	+4.1971e+01		+4.1231e+01		3.746e-04		1.453e+00		$4.179 \mathrm{e}+00$		1. 5357e-03
14	256Rf	$14+14+$	14+	.1913e+01		1231e+01		$509 \mathrm{e}-07$		$1.449 \mathrm{e}+00$		$106 \mathrm{e}+00$		$1.4114 \mathrm{e}-06$

Y' vs Y @ the SV slits ${ }^{256} R f^{20+}$

$\underline{2}^{\text {nd }}$ order optics

Configurations: Q5 field value modification

X \& Y envelopes of ${ }^{256} \mathrm{Rf}^{20+}$
${ }^{256} \mathrm{Rf}^{20+}$ transmission
(without charge state coefficient)
86.6\%

No slits 4 in use

Fusion-Residues products
[3] Total: All reactions (pps)

Total rate is $8.5 \mathrm{pps} / 1 \mathrm{puA}$

Configurations : 05 field value modification

Fusion-Residues +
Fusion-Fission products

File (link) :
SHELS v9 brho quad5 fission.Ipp
[3] Total: All reactions (pps)
${ }^{50} \mathrm{Ti}(4.7 \mathrm{MeV} / \mathrm{u})+\mathrm{PbS}\left(0.41 \mathrm{mg} / \mathrm{cm}^{2}\right)$; Settings on ${ }^{256} \mathrm{Rf}^{20+} .20+$; Config: DSSSSSSSSSESDSSSDSESSSSSSS.. $\mathrm{dp} / \mathrm{p}=67.78 \%$; Brho(Tm): 0.7489, 0.7489, 0.7489, 0.7489
$\mathrm{N}=0-200$

Total rate is
8.7 pps / 1 puA

Configurations : Final version for the LISE ${ }^{++}$package

SHELS.lpp SHELS.lcn are based on SHELS v9 brho quad5.lpp

LISE
 files
 examples
 1. dubina

Angular Acceptance
$\frac{\text { MICHIGAN STATE }}{\text { UN IVERS ITY }}$
LIS E

File: SHELS v9 brho quad5 acceptance.lpp

${ }^{50} \mathrm{Ti}$: Monte Carlo Transmission Plot

${ }^{50} \mathrm{Ti}(4.3 \mathrm{MeV} / \mathrm{u})+$; Transmitted Fragment ${ }^{50} \mathrm{Ti}{ }^{20+. .20+}$ (beam); Optics Order: 1 dp/p=21.94\% ; Brho(Tm): 0.7489, 0.7489, 0.7489, 0.7489

Emitance			
$?$	Beam CARD (sigma, semi-axis half-width...)	1D - shape (Distribution method)	
1. X mm	0.01	Gaussian	\checkmark
2. T mrad	150	Rectangle uniform	\checkmark
3. Y mm	0.01	Gaussian	\checkmark
4. P mrad	150	Rectangle uniform	\checkmark
5. L mm	0	Gaussian	\checkmark
6. D \%	0.0001	Gaussian	\checkmark

Angular Acceptance of the 1 s-t half of separator

50Ti : Monte Carlo Transmission Plot
after "Stripper": $X^{\prime}($ Theta $)$ [mrad]: window projection $-. .50 \mathrm{Ti}(4.3 \mathrm{MeV} / \mathrm{u})+$; Transmitted Fragment ${ }^{50 \mathrm{~T}} \mathrm{~T}^{20+20+}$ (beam); Optics Or dp/p=21.94\% ; Brho(Tm): 0.7489, 0.7489, 0.7489, 0.7489
AnaAccent: Off: Bounds: ON: "dd1sv" - last block for MC calc: Gate 1: "AND" (XImml): Confia: DSSSSSSSSSESDSSSDSES: \square

```
ipper": X'(Theta) [mrad] window projection --- \(507 \mathrm{Ti}(4.3 \mathrm{MeV} / \mathrm{u})+\); Transmitted Fragment \(50 \mathrm{Ti} 20+\ldots 20+\) (beam); Optics Order: 1
```


| ribution | z -mean | 1 | x -max | I | y-max | \| deviation | | FWHM | 1 | area | \|SunOfCounts| | LeftPsigma\|RightPsigma| |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

50Ti : Monte Carlo Transmission Plot
after "Stripper": $\mathrm{Y}^{\prime}(\mathrm{Phi})[\mathrm{mrad}]$: window projection $--{ }^{50} \mathrm{Ti}(4.3 \mathrm{MeV} / \mathrm{u})+$; Transmitted Fragment ${ }^{50 \mathrm{~T}} \mathrm{i}^{20+20+}$ (beam); Optics Orde dp/p=21.94\% ; Brho(Tm): 0.7489, 0.7489, 0.7489, 0.7489 AngAccept: Off; Bounds: ON; "dd1sv" - last block for MC calc; Gate 1: "AND" (X [mm]); Config: DSSSSSSSSSESDSSSDSESS:

Angular acceptance $X^{\prime}= \pm 93$ mrad, $Y^{\prime}= \pm 46$ mrad (Rectangle shape) has been applied to the "Tuning" dipole.

It's important for Analytical transmission calculations ("Distribution" method). The Angular acceptance option can be turned off in the Monte Carlo case.

Angular Acceptance of the entire separator

${ }^{50} \mathrm{Ti}$: Monte Carlo Transmission Plot

${ }^{50} \mathrm{Ti}(0.2 \mathrm{MeV} / \mathrm{u})+$; Transmitted Fragment ${ }^{50} \mathrm{Ti}^{4+. .4+}$ (beam); Optics Order: 1 $\mathrm{dp} / \mathrm{p}=35.11 \%$; Brho(Tm): 0.7489, 0.7489, 0.7489, 0.7489
IgAccept: Off; Bounds: ON; "slits 4" - last block for MC calc; Gate 1: "AND" (X [mm]); Config: DSSSSSSSS:

Beam suppression : after C1

Stripper
tuning DTS1
slits 1
DS1Q1
Quad 1
dqiqk
Quad 2
dqiqk
Quad 3
dq3c1
C1
dc1d1
dd1sv
slits SV
dsvd2
D22_2
dd2c2
C2
dc2q4
Quad 4
dqiqk
Quad 5
dqiqk
Quad 6 dq6d3
D8
drift
slits 3
drift
slits 4
drift
Material 1

C1 : Beam \& SetFragment Charge States
${ }^{50} \mathrm{Ti}(4.7 \mathrm{MeV} / \mathrm{u})+\mathrm{PbS}\left(0.41 \mathrm{mg} / \mathrm{cm}^{2}\right)$; Settings on ${ }^{256} \mathrm{Rf}^{20+}$. $20+$; Config: DSSSSSSSSSEA
$\mathrm{dp} / \mathrm{p}=100.00 \%$; Brho(Tm): 0.7489
all charge states sepa

Beam suppression : after D22_1

D22_1: Beam \& SetFragment Charge States
${ }^{50} \mathrm{Ti}(4.7 \mathrm{MeV} / \mathrm{u})+\mathrm{PbS}\left(0.41 \mathrm{mg} / \mathrm{cm}^{2}\right)$; Settings on ${ }^{256} \mathrm{R}^{20+.20+; ~ C o n f i g: ~ D S S S S S S S S S E S D A ~}$ $\mathrm{dp} / \mathrm{p}=100.00 \%$; Brho(Tm): 0.7489, 0.7489
all charge states separ
Quad 1
dqiqk
Quad 2
dqiqk
Quad 3
dq3c1
C1
dc1d1
D22_1
dd1sv
slits SV
dsvd2
D22_2
dd2c2
C2
dc2q4
Quad 4
dqiqk
Quad 5
dqiqk
Quad 6 dq6d3

Material 1

