Decay channel analysis
Decay channel analysis

24O excitation distributions: Input parent distr.

ABRASION-ABLATION 48Ca + Ni
Excit Energy Method $< 2 > \cdot < E >$ 10.00 dA MeV sigma 10.00
NP=84, SE DB0+Ca2 Density *auto* Geom.Corr. Off Tunig *auto* FisBar=1 Fac=1.00 Modes=1010 1000 010
More intense channel to get ^{24}O is $2\alpha + xn$
$^{48}\text{Ca} + \text{Ni} \rightarrow Z=8 \ (\text{left}) \ and \ Z=16 \ (\text{right})$
Excitation energy (method 3): \(Ex = \text{const}(dA) \) \(\text{sig}(Ex) = \text{const}(dA) \)
48Ca+Ni \rightarrow Z=8 (left) and Z=12 (right)

$\text{Ex}=10\text{MeV/dA, } \text{sig}(\text{Ex}) = 10\text{MeV/dA}$

To produce 24O

<table>
<thead>
<tr>
<th>Ex & sig(Ex)</th>
<th>Alpha</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4 & 9.6</td>
<td>0.89</td>
<td>0.05</td>
</tr>
<tr>
<td>10 & 10</td>
<td>0.26</td>
<td>0.59</td>
</tr>
</tbody>
</table>
Excitation energy

Widths versus mean values of excitation energy distributions obtained by matching EPAX values with the AA model.
Ex and \(\text{sig}(\text{Ex}) \) should be the function of \(dA \) in AA

What do we know from experiments?
- Decreasing the projectile velocity – increase of production cross-section of neutron-rich isotopes
- Target with large \(Z \) – increase of production cross-section of neutron-rich isotopes
- Low Exponential tail is due to dissipative processes

Why?
- Time of dissipation is increasing
- Touching Area + Time of dissipation is increasing due to target size

Touching area is \(\sim \) to square (Chord_min)
Time of dissipation \(\sim \) to Chord_max & beam velocity
But Chords are functions of \(dA \)!
Dissipation process contribution defines a way to produce nucleus

<table>
<thead>
<tr>
<th>Ex & sig(Ex)</th>
<th>Alpha</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.4 & 9.6</td>
<td>0.89</td>
<td>0.05</td>
</tr>
<tr>
<td>10 & 10</td>
<td>0.26</td>
<td>0.59</td>
</tr>
</tbody>
</table>
Excitation energy distribution changes due to dissipation. What is shape??
Is there a correlation between the final fragment momentum distribution and prefragment excitation energy?
Or is there a correlation between the final fragment momentum distribution and the chain of decays?
It will be nice to measure ... Fragment Energy vs N(n) [and N(alpha)]

On different targets with the beam of different energies
2D “Cross section” plot -> file
Break-up channel

The limiting temperature T_{lim} as a function of mass number on the β-stability line [De96].

$36S$ for $24O$?