LISE++ development: Fusion-Fission

* LISE++ new reaction mechanism: Fusion-Fission

* LISE++: combination of consecutive transmission product calculation for several reactions

Version 7.8.87 beta from 6/6/6 available through LISE sites
LISE++ new reaction mechanism: Fusion-Fission

1. No angular momentum contribution
2. Fission cross section is taken without pre-fission neutrons

Fusion from “Fusion-Residual”

Fission from “Abrasion-Fission”

Transmission probability for a one-dimensional potential barrier

- Classical
- Quantum-mechanical

h_omega - Curvature parameter of the parabolic potential describing the barrier (default value 5 MeV)
Calculated fusion-fission cross sections are kept in memory.

Break-up and fission channel cross sections in the Fusion information dialog (Fusion-Residual reaction).
Fusion-Fission kinematics (after target)

Monte Carlo

LISE analytical
Fusion-Fission kinematics (after target)

Monte Carlo

LISE analytical

174Yb fragment kinematics (expected final)

Stripper-Angle: x'output

Dipole 1-Energy: Input

174Yb (20.0 MeV/u) + Be (0.5 mfp). Settings on 174Yb: Config. SS1/SS11/11, 50% Strip. Pitch 1.9, Distance 1. PT1, 1.715

Initial angular emittance +25 mrad (SISSI)

June 16, 2006. NSCL/MSU
Angular acceptance

Monte Carlo

LISE analytical

174Yb fragment kinematics (expected final)

Statistics 132Yb

132Yb Unknown (Z=70, N=112)

Production Rate (ppb) 3.51e-6
Reaction FuPFe
Sum of reactions (ppb) 3.51e-6
Q in the target (MeV) 1.98e-5
Total transmission (%) 4.25

Target (%)
Unreacted in meter. (%) 100
Unstopped in meter. (%) 100
Dipole 1 (%) 58
X angular transmission (%) 1.05
Y angular transmission (%) 75.24
SlitsDisp (%) 8.71
X space transmission (%) 8.75
Y space transmission (%) 99.6
Dipole 2 (%) 84.1

Dipole 1-DebugFission

June 16, 2006 NSCL/MSU
Angular and Momentum acceptances

Angular acceptance (2)

Monte Carlo

LISE analytical

Momentum acceptance

Monte Carlo

LISE analytical
238U + d: data and LISE calculations (1)

<table>
<thead>
<tr>
<th>Elab (MeV/u)</th>
<th>Ecm (MeV)</th>
<th>Excitation (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>20</td>
<td>40</td>
<td>48</td>
</tr>
<tr>
<td>30</td>
<td>60</td>
<td>68</td>
</tr>
<tr>
<td>50</td>
<td>100</td>
<td>108</td>
</tr>
</tbody>
</table>

Fusion barrier = 12.5 MeV

LISE++ calculations
- total Bass
- fusion (quantum-mech. $h_0=5$ MeV)
- Fusion-Fission (without prefission neutrons)
- Fusion-Breakup

[d+238U] - Stevenson et al., PR 111 (1958) 886

Fission channel cross-sections
- total complete fusion - fission cross section is equal to 1310 mb
$^{238}\text{U} + d \rightarrow \text{ff} \rightarrow ^{157}\text{Eu}$

$^{238}\text{U} + d \rightarrow \text{ff} \rightarrow ^{156}\text{Eu}$

$^{238}\text{U} + d \rightarrow \text{ff} \rightarrow ^{153}\text{Sm}$

$^{238}\text{U} + d \rightarrow \text{ff} \rightarrow ^{164}\text{Eu}$
238U + C : data and LISE calculations

Fusion and fusionlike process
A.Gavron et al., PRC 30 (1984) 1550

FIG. 8. Angular distribution of fission fragments for ¹²C at 95 MeV. Circles, on ¹⁷⁴Yb; squares, on ¹⁹⁷Pt; triangles, on ²³⁸U. Lines are results of calculations using the transition state model. Alternate systems have solid and dashed lines to improve readability.
$^{238}\text{U} + ^{16}\text{O}$: data and LISE calculations

Fusion and fusionlike process
A. Gavron et al., PRC 30 (1984) 1550
\[^{142}\text{Nd} + ^{16}\text{O} : \text{data and LISE calculations (1)} \]

LISE++ calculations
- total Bass
- fusion (quantum-mech. $E_0=5\,\text{MeV}$)
- Fusion-Fission (without pre-fission neutrons)
- Fusion-Fission
- "Fusion-Breakup"

[\[^{16}\text{O} + ^{142}\text{Nd}\] - A.Gavron et al., PRC 30 (1984) 1550]

Fission barrier? "FisRot" (Cohen) was used default

Fusion and fusionlike process
A.Gavron et al., PRC30 (1984) 1550
142Nd + 16O: data and LISE calculations (2)

Fission barriers at $L=0$ for $Z=68$ isotopes

LISE calculations without angular momentum contribution do not reproduce well this region!

FIG. 17. Schematic partial wave distribution for the 16O+142Nd reaction. ER (evaporation residues) and FIS (fusion) label regions of complete fusion which lead to evaporation residues and fission, respectively. 4He and 8Be label regions of incomplete fusion which, after emission of these particles, end up predominantly in the ER region.
\[^{238}\text{U} + ^{32}\text{S} : \text{data and LISE calculations} \]

Graph:
- **Axes:**
 - \(\sigma \) (mb) on the y-axis
 - Center of mass energy, MeV on the x-axis

Table:

<table>
<thead>
<tr>
<th>Ecm (MeV)</th>
<th>Elab (MeV)</th>
<th>Elab (MeV/u)</th>
<th>Excitation (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>308</td>
<td>350</td>
<td>10.9</td>
<td>204</td>
</tr>
<tr>
<td>440</td>
<td>500</td>
<td>15.6</td>
<td>336</td>
</tr>
<tr>
<td>617</td>
<td>700</td>
<td>21.9</td>
<td>512</td>
</tr>
</tbody>
</table>

Fusion barrier = 161.84 MeV

LISE++ Calculations
- Total Bessel
- Fusion (quantum-mech. \(\hbar = 5 \) MeV)
- Fusion-Fission (without pre-fission neutrons)
- "Fusion-Breakup"
- \([^{32}\text{S} + ^{238}\text{U} \) - A. Gavron et al., PRC 30 (1984) 1550
- Fusion-Fission
Combination of consecutive transmission product calculation for several reactions

Notes

- Coulomb fission is included in Abrasion-Fission
- Use the Abrasion-Ablation model instead EPAX for the Projectile fragmentation mechanism in the case of consecutive calculations
- Preliminary check excitation energy region settings for Abrasion-Fission mode
Combination of consecutive transmission product calculation

$^{238}\text{U}(40\text{MeV/u}) + C \rightarrow \text{Fusion or Abrasion ??}$

Cross sections (Fusion \rightarrow Fission)

Cross sections (Fusion \rightarrow Residual)

Cross sections (Abrasion–Fission (Low+Middle+High))

Cross sections (Projectile Fragmentation)
Combination of consecutive transmission product calculation

\[^{238}\text{U}(40\text{MeV/u}) + C \rightarrow \text{Angular acceptance} \]