

Why? Where? How?

Investigations into physics of exotic nuclei in laboratories worldwide Long-term scientific program of RIB research at JINR Fragment-separators for high-intensity primary beams

Marek Lewitowicz Leonid Grigorenko

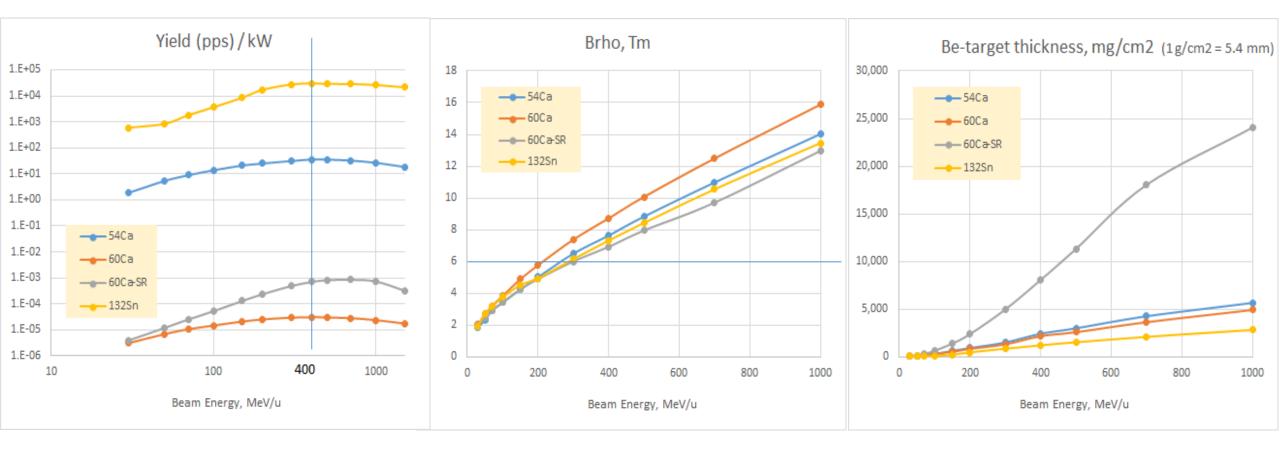
Haik Simon

<u>Some aspects of RIB production with 100 MeV/u beams</u>

LISE⁺⁺ package Excel LISE for Excel

"Production of Fast Rare Ion Beams"

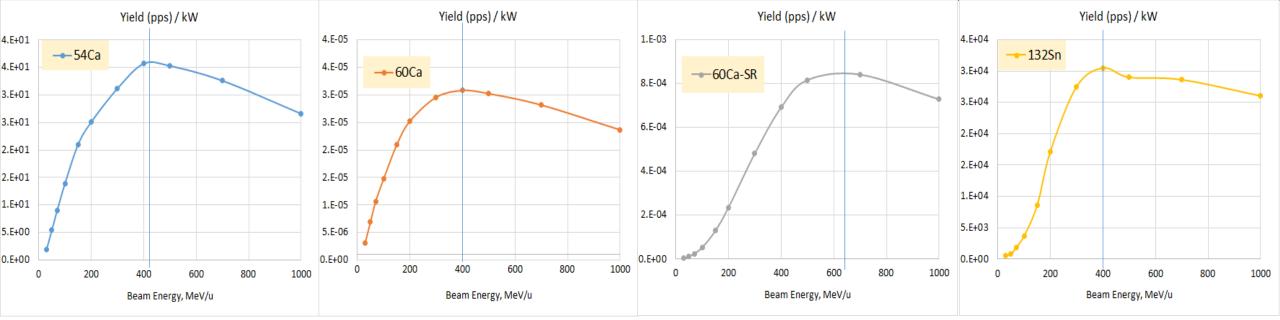
Lectures at the Euroschool on Exotic Beams including examples of how to use the LISE⁺⁺ code


- Introduction to production of Fast Rare Ion Beams
- Production Area
- Separation
- Identification
- Production of new isotopes
- LISE^{++ :} Utilities
- Radioactive beam physicist task

How to Make R	are Isotope Beams at Home"		Theatrical Release poster
Directed by Produced by Story by Written by Consulted Starring <i>Bred Sherri</i> .	Oleg Tarasov NSCLM/SU, NSF Oleg Tarasov Brad Sherril Alexandra Gade	Г К е Д л d	<section-header><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></section-header>
Distributed by	"FRIB/NSCL Staff Information Talk" group		^{EI} Se → ^{EI} Ca Ø A1000
Release date	April 4, 2018 (United States) 30 minutes		Participants should feel free to bring their lunch!

Optimum energy for intense RIBs

ANGULAR ACCEPTAN	x-momentum[%] (slit/dispersion)	
Horizontal ± 50	mrad	total 6
Vertical ± 50	mrad	EPAX2
Solid angle 7.85	msr	Convolution

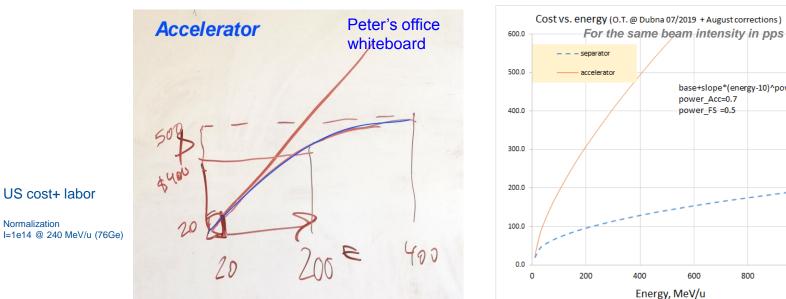

6

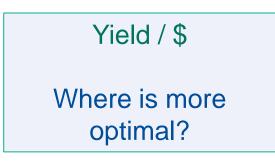
US cost+ labor

Normalization

Functions of energy : Projectile Fragmentation & Abrasion-Fission (linear scale)

base+slope*(energy-10)^power

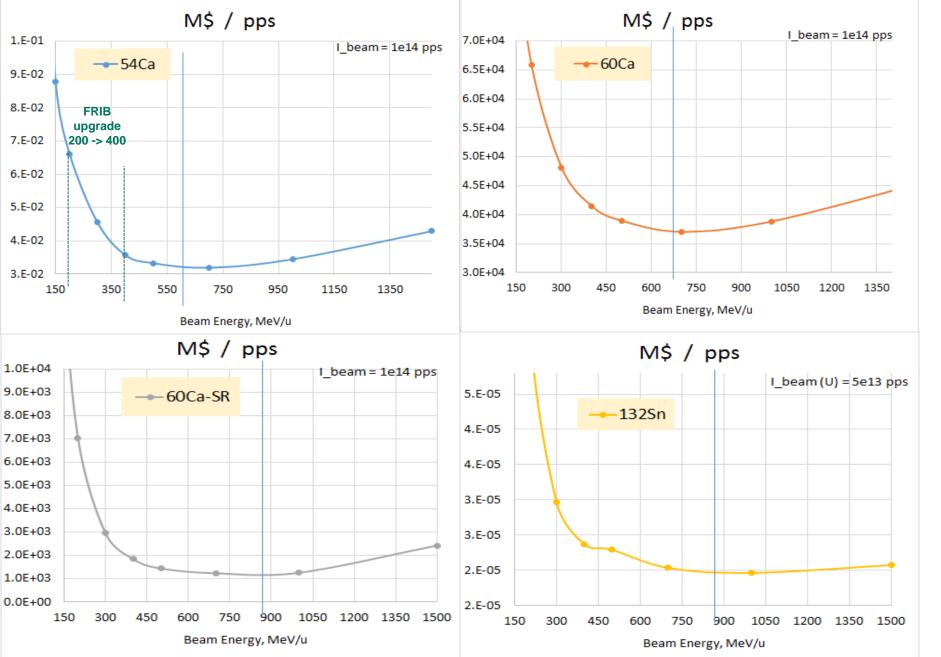

800

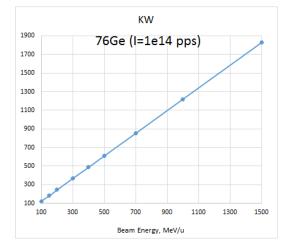

1000

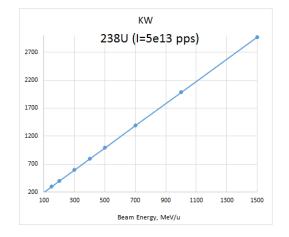
power Acc=0.7

power FS =0.5

600




O.B.Tarasov@ExoticNucleusvvorksnop.crete; 22-23.08.19



Rare Isotope Beam cost as a function of energy

JI ↔ MICHIGAN STATE Se UNIVERSITY

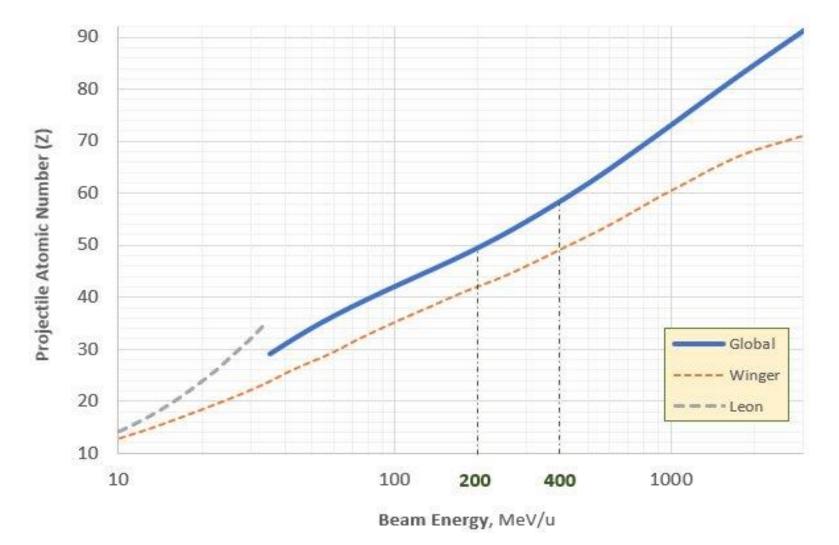
+ Reaction target thickness factor might be taken into account Fragment production rate factors

Fragment production rate

N(A, Z) dσ/dp d_t	number of events for a given fragment was extracted separately differential cross-sections target thickness	<> ↑↑	
Ι	beam intensity		Dependence from
Δt	duration of measurement,		beam energy
R _{UVE}	live time ratio (as well pile-ups)		beam energy
с	the transmission efficiency through a fragment separator (ang. & mom)	^ *	
Δр	denotes the momentum opening	I	
N _A	is the Avogadro number and		
M,	the atomic mass number		
Closs	loss due to reactions of primary beam and fragment of interest in material	$\downarrow\downarrow$	
Cassand	gain due to production of fragments of interest in secondary reactions	↑	
C second	charge state factor	*	* Eived thickness torget
Ccharge	onargo stato nacion	l I	* Fixed thickness target

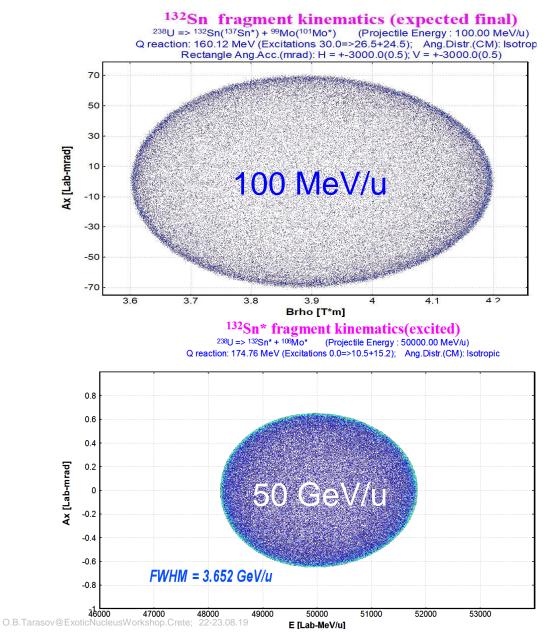
$N(A,Z) = (d\sigma/dp) \Delta p \Delta t M_t / N_A d_t I c R_{LIVE} C_{second} C_{loss} C_{charge}$

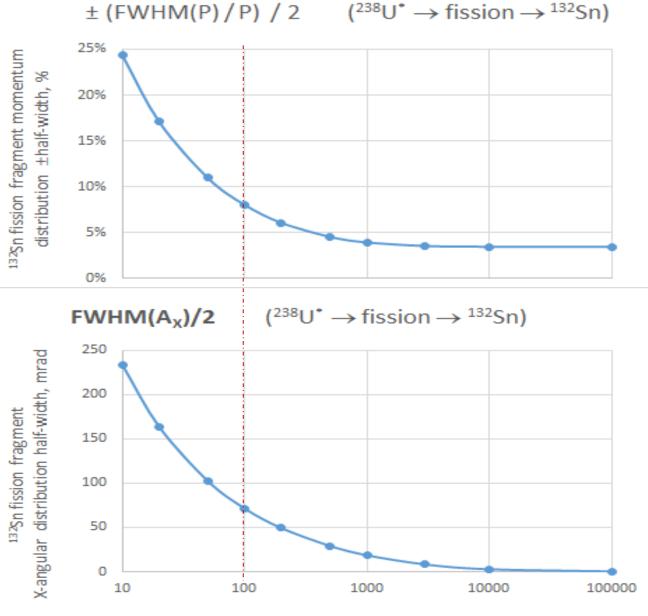
From the presentation @ NuSTAR meeting (10/10/09, Dubna, Russia)


138Sn					factors	
	F-RIB	RIBF	FAIR	F-RIB	RIBF	FAIR
Energy, MeV/u	200-250	350	1500			
Thickness, g/cm2	0.34	1.3	7.4	1	4	22
Cross section, mb	6.00E-09	6.00E-09	6.00E-09	1	1	1
Primary beam intensity, pps	5.00E+13	1.30E+10	3.00E+11	3846	1	23
Secondary reactions coefficient	3.06	9.29	54.71	1	3	18
Loss due to reactions in material	0.9	0.7	0.12	7	6	1
Anglular and momentum acceptances	0.7	0.5	0.8	1.4	1	1.6
Charge states	0.5	0.72	1	1	1.4	2.0

2009: RIBF @ RIKEN 23U 345 MeV/u, 2pnA Image: Second sec	Exploration of	unknown neutron-rich region. Next	TE TY
With pre-separator, 1.5 GeV/u, 10 ¹² pps (* - Cristoph Scheidenberger, NuSTAR workshop at Dubna) View 2017: F-RIB @ MSU 200-250 MeV/ u , 400 kW			
200-250 MeV/ u , 400 kW	F <mark>A</mark> ÎR	with pre-separator, 1.5 GeV/u, 1012 pps	
NuSTAR 10/1009; Dubna, Russia 28	FRIB		
	NuSTAR: 10/10/09, Dubna, Russia		28

Probabilty of 90% full-stripped ions after a Carbon target



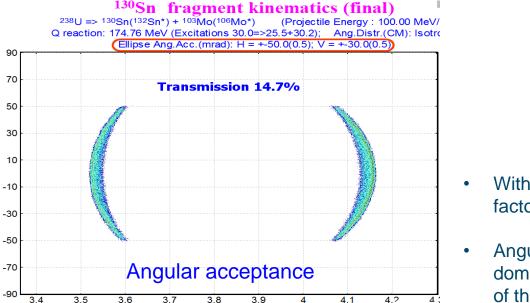

- 'Reasonably pure' 100 MeV/u RIB can be obtained up to Z=40
- High-Z experiments will be discussed later

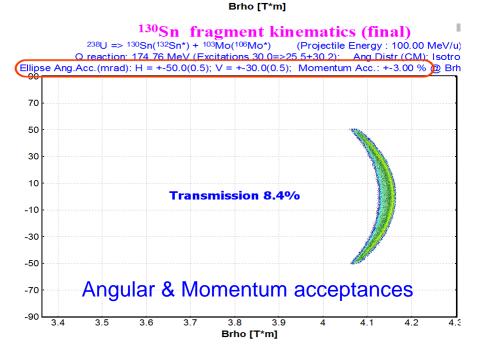
Fission fragment kinematics as function of energy

http://lise.nscl.msu.edu/paper/2019/FissionVelocity%20v4.pdf

LI ^{●●} MICHIGAN STATE **Se** UNIVERSITY

Beam Energy, MeV/u

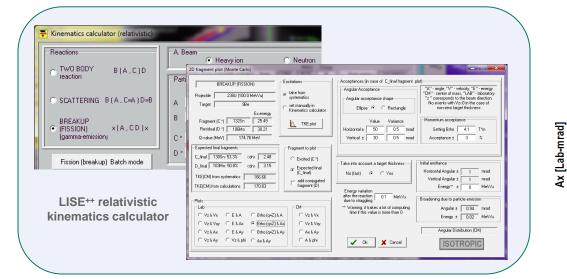

Fission fragment transmission: DERICA case


90

10

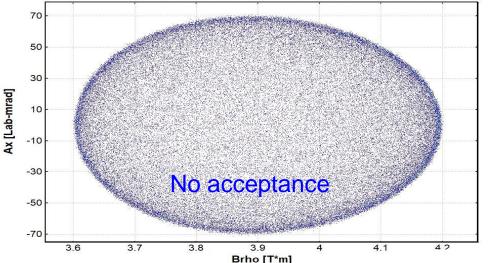
-10

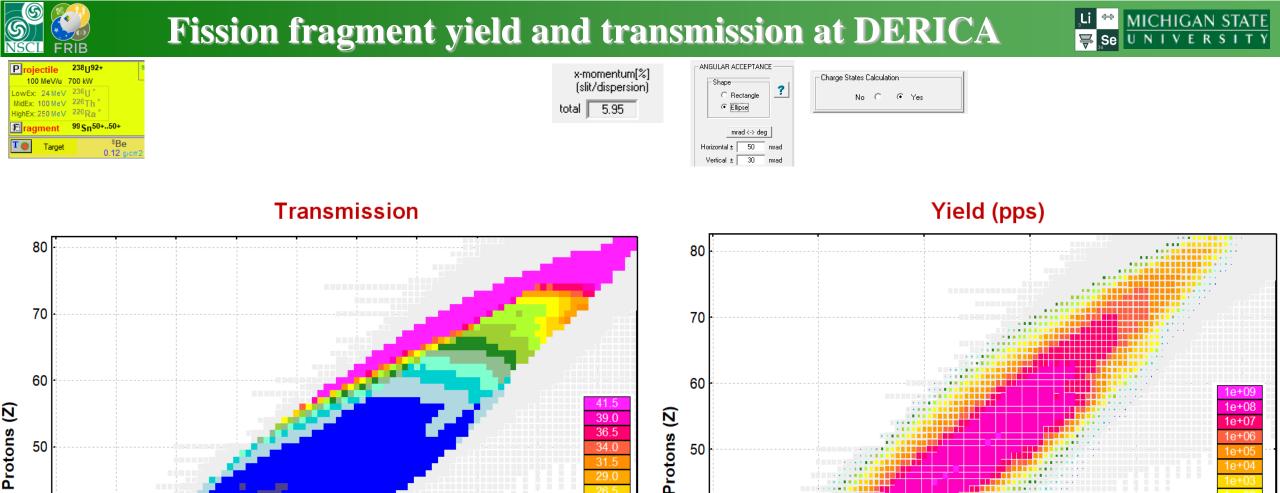
Ax [Lab-mrad]



Without charge state factor

MICHIGAN STATE


₩ Se UNIVERSITY


- Angular acceptance dominates in the case of thin target
- Less 10% transmission

Q reaction: 160.12 MeV (Excitations 30.0=>26.5+24.5); Ang.Distr.(CM): Isotrop Rectangle Ang.Acc.(mrad): H = +-3000.0(0.5); V = +-3000.0(0.5)

29.0

19.0

16.5

14.0

9.000

4.000

1.500

110

40

30

20

20

60

80

Neutrons (N)

100

.

40

30

50

60

40

70

Neutrons (N)

80

90

100

40

30

20

20

1e+0!

1e+04

1e-01

1e-02

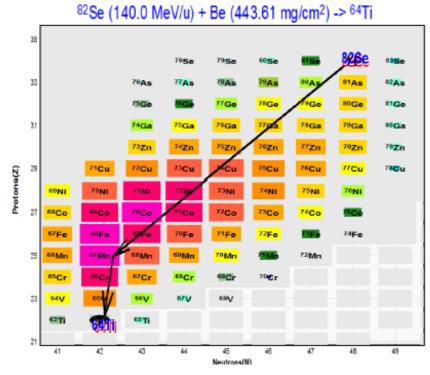
1e-04

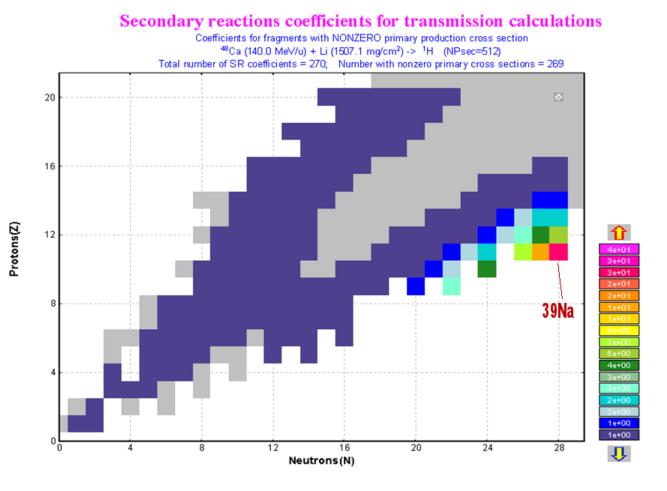
1e-06

1e-07

120

Secondary reactions

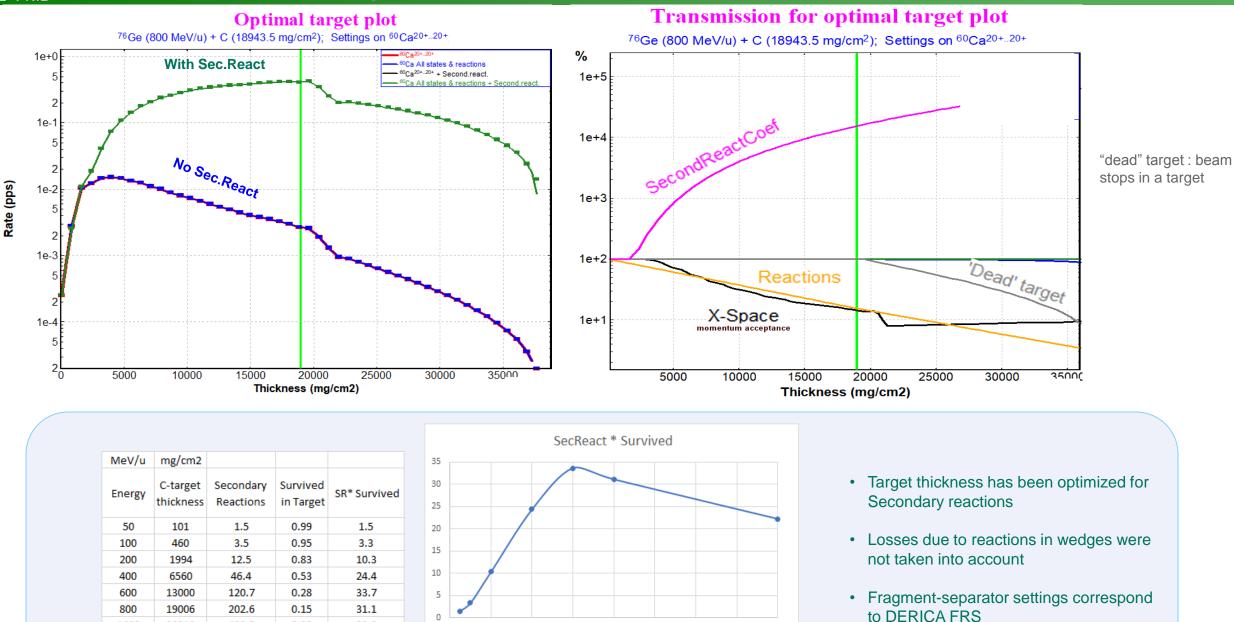



LISE⁺⁺ : O.Tarasov and D.Bazin, NIMB 266 (2008) 4657 LISE Sec.Reactions: D.Bazin O.Tarasov et. al., NIM A482 (2002) 307

LISE⁺⁺ calculates the addition to each product nucleus by considering the contributions from ALL of the intermediate nuclear reaction steps.

The effect is expected to be largest for the most exotic products.

Parent nuclei: multistep production probability



Still there is not a publication to prove large experimental impact of secondary reactions

⁶⁰Ca RIKEN experiment : ⁶²Sc – good candidate (charge-exchange reaction)?

Secondary reactions factor : ⁷⁶Ge → ⁶⁰Ca

O.B.Tarasov@Ex

452.5

0.05

1600

30510

22.2

0

200

400

600

800

1000

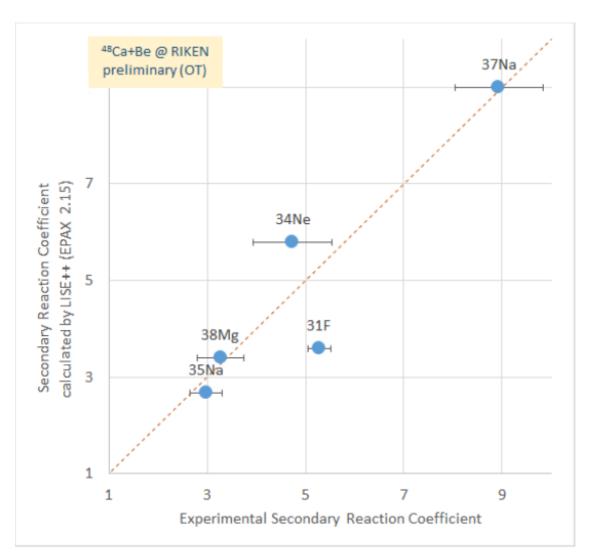
1200

1400

1600

14

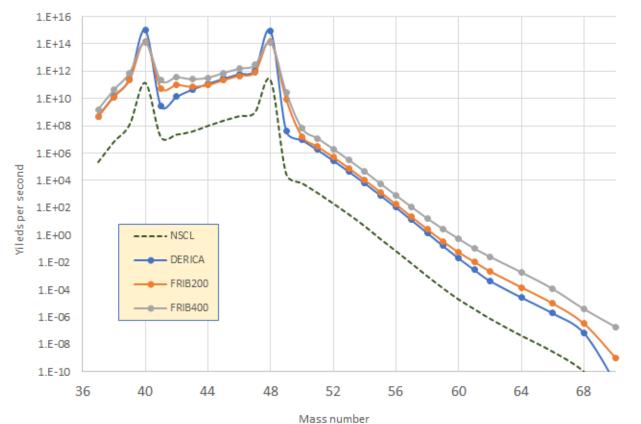
,LI ↔ MICHIGAN STATE ⇒ Se UNIVERSITY

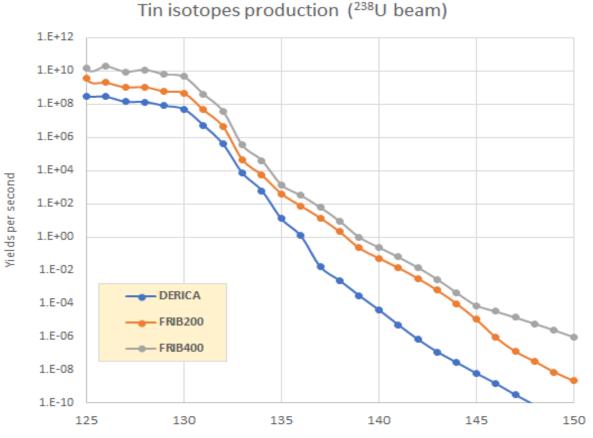


			Cross secti	on, pb					
	Measu- rement	error	LISE++ Calculation EPAX 2.15	RIPS **	error (+)	RIPS **	ratio	ratio error	LISE++
	BigRIPS, 12/2014		(no 2ndary reactions)	64 MeV/	u	64 MeV/u	BigRIPS/ RIPS		secondary reaction coefficient
				Ta targe	t	Be target	Be target		EPAX 2.15
³¹ F	2.53	0.07	1.16	1.006	0.01	0.48	5.3	0.2	3.6
³⁴ Ne	0.21	0.02	0.53	0.093	0.013	0.04	4.7	0.8	5.8
³⁷ Na	0.46	0.02	0.34	0.101	0.009	0.05	9.6	0.9	9.0
³⁸ Mg	54.5	0.545	30.5	35	5	16.67	3.3	0.5	3.4
³⁵ Na	127.5	1.275	45.8	90	10	42.86	3.0	0.3	2.7
** RIPS 64 AMe M. Notani et al.		42 <mark>(</mark> 2002) 49 d	10 ³	²⁹ F	32NIa	Ι	I	-
EPAX 2.15 Ratio	CS(Ta)/CS(Be)=	2.1	Production cross section [pb	10 ²	N=2Z	+2	³⁵ Na Φ	Φ	
			ross so	101				³⁸ Mg	ф - ⁴¹ А1
			on c	100		³¹ F			
			ctic	L0-1	N=2Z	+4	121-0		
			Produ	0-2		2	'Ne Y	³⁷ Na	
				Ē			1		
					20	22	24	26	28
						Neu	tron nun	nber	

- 1. We did not have a thin target in the 2014 experiment
- 2. Data from the RIPS experiment ⁴⁸Ca(64 MeV/u)+Ta were used with scale parameter (1./2.1) to compare with current data.
- 3. Fair agreement is observed in this comparison

Analysis from 01/19/2015 + ³⁸Mg & ³⁵Na points from @ 10/16/2016


DERICA yields


DERICA Ca & Sn yields vs ...

Calcium isotope production (beams ⁴⁰Ca, ⁴⁸Ca, ⁸²Se)

				Angular	Momentum	Reaction
				acceptance,	accetance,	target
		I, KW	E, MeV/u	mrad (ellipse)	%	Factor
Prim.React-EPAX2	NSCL	0.4	140	120 x 80	5	1.74
Sec.React- EPAX2	DERICA	700	100	100 x 60	6	1
Convolution model	FRIB200	400	200	80 x 80	10	3.2
Winger Atima	FRIB400	800	400	80 x 80	10	10.2

Mass number

- Remember about a Reaction target factor !
- It looks like very potential, and exceeding by two order of magnitude an operating RIB facility
- 700 kW at 100 MeV/u is .. Let's say it difficult...
 So there is reserve to decrease a little bit the power (see the next slide)

Due to momentum compression

in carbon

Target and Catcher requirements

DERICA characteristics and beam intensity [pps] have been implemented

Enormous value...

Nowadays Target

weakest place high-

Do not forget about

70 kW is more realistic.

and then think about a

possible upgrade

power RIB production

technology is a

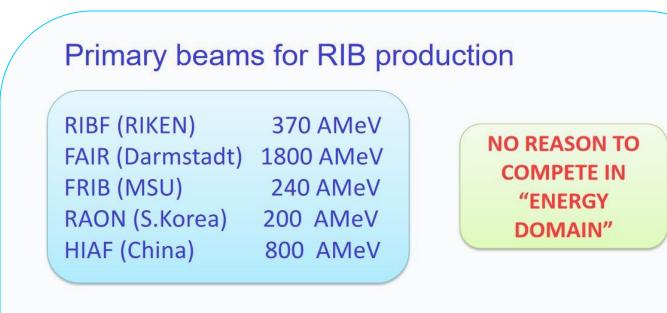
flexibility

•

liquid target

Probably it's required a

					in carbon		
			[kW]	[MeV/u]	[MeV/(mg/o	cm^2)]	
	type	ion	power	E/m	dE/dx	P*dE/dx	I,pps
DERICA	linac	40Ca U	700	100	2.6 48.4	1 820 33 880	1.1e15 1.8e14
RIBF	cyclotr.	U67+	80	345	25.2	2017.9	6.1e12
RIBF	cyclotr.	U67+	3.3	345	25.2	83.2	2.5e11
FRIB	linac	U78+	400	200	32.3	12915.2	5.2e13
NSCL	cyclotr.	Ca20+	0.54	140	2.0	1.1	3.5e11
FAIR	synchr.	U28+	17	1500	17.1	290.4	3.0e11
GSI/FRS	synchr.	U73+	0.04	1000	18.1	0.7	1.0e09
J-PARC	synchr.	H+	750	30000	0.0020	1.5	1.5e14
J-PARC	synchr.	H+	470	30000	0.0020	1.0	
ESS	linac	H+	5000	2000	0.0018	8.8	1.6e16
PSI	cyclotr.	H+	1400	590	0.0023	3.2	
SNS	ring	H+	1400	1000	0.0019	2.7	
SNS	ring	H+	2800	1300	0.0019	5.4	1.3e16
	ergy → po es 50-100ns	ower depo	osit mode design goal	rate			


H. Simon • Dubna 20190208

modified by OT

L.Grigorenko's presentation

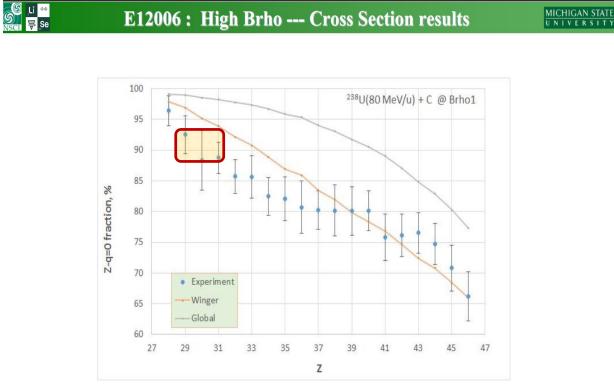
Possible strategy of RIB production

To focus on the INTENSITY of primary beam for modest energy 100-150 AMeV Enjoy the advantages of relatively low-energy RIBs:

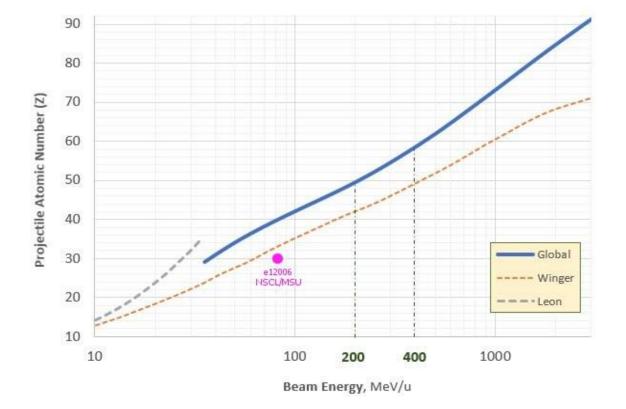
- Easier to study reactions in 20-70 AMeV energy range
- Easier to operate stopped RIBs

500 MeV/u (more optimal for RIB) highpower facility of RIB costs ~ 1 B\$

Study reactions, stopped beams in 50-100 MeV/u


Ţ

High-Z beams at low and intermediate energies


40

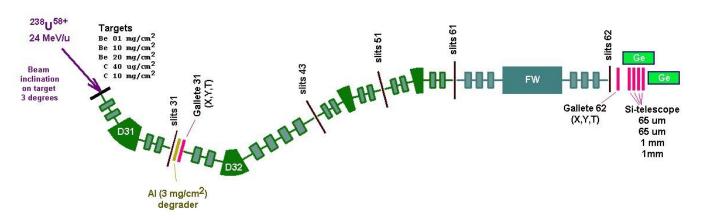
OT@NSCL 03/05/1

M.Bowry, O.B.Tarasov et al., in preparation

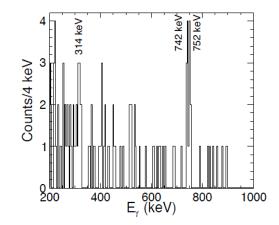
Probabilty of 90% full-stripped ions after a Carbon target

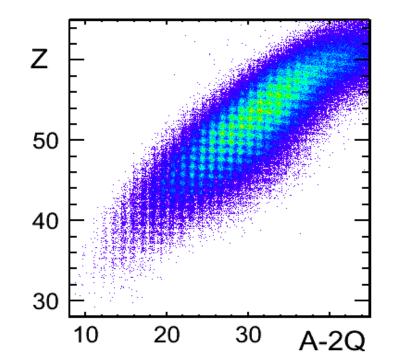
It's even more pessimistic...

'Reasonably pure' 100 MeV/u RIB can be obtained up to Z=35?


- High-Z Primary and Radioactive beams @ FLNR
- Physics with RI stopped beams
 - ✤ Half-life
 - ♦ P_n
 - ✤ Isomers (T_{1/2}> 100 ns)
 - Beta-gamma
 - Production cross-sections (reaction mechanism)
 - Interaction and total cross sections (halo study)
 - Decay mode
 - Search for new isotopes

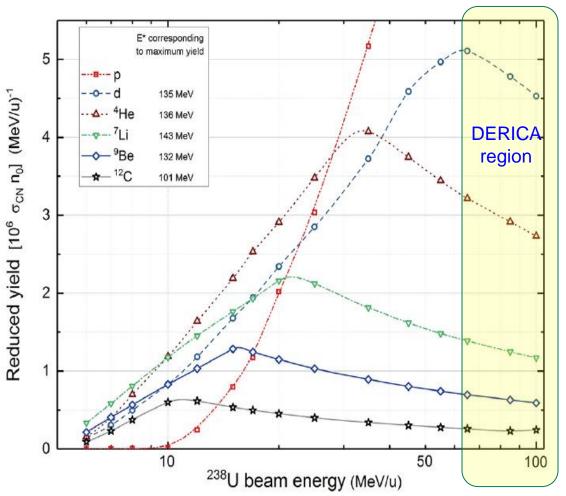
*****


LISE3 @ GANIL

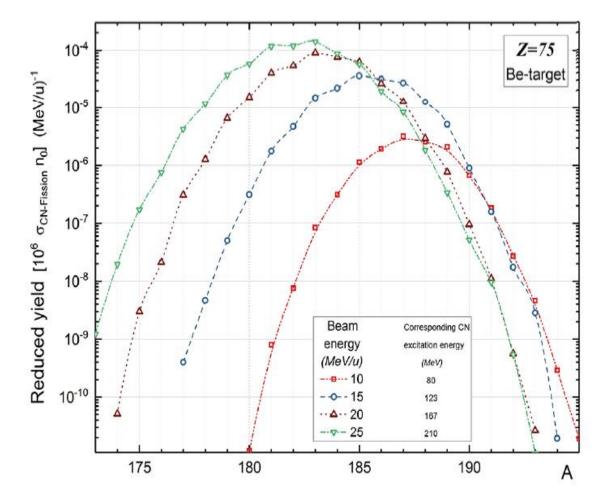

- A ²³⁸U beam at 24 MeV/u with a typical intensity of 10⁹ pps, was used to irradiate a series of beryllium targets and a carbon target.
- The beam was incident at an <u>angle of 3° in order not to</u> overwhelm the detectors with the beam charge states.
- Fragments were detected in a Silicon telescope at the end of the separator. Fission fragments produced by inverse kinematics are identified by ΔE-TKE-Bp-ToF method.

OT et al., Eur. Phys. J. A (2018) 54: 66

O.B.Tarasov@ExoticNucleusWorkshop.Crete; 22-23.08.19



Gamma-ray spectrum observed in coincidence with $^{128}Te.$ The characteristic gamma lines of 314, 742 and 752 keV sign the decay of the isomeric state of $T_{\frac{1}{2}} = 370$ ns



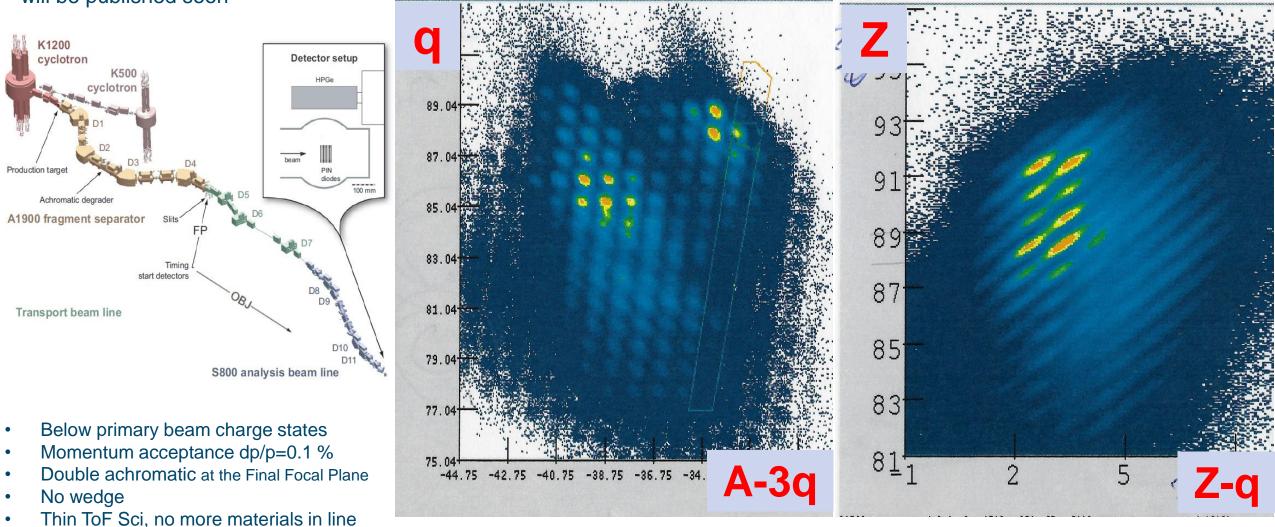
Calculated CN formation rates in reaction of ²³⁸U projectiles with various light targets as function of a primary beam energy

- thickness corresponds to a 1 MeV/ $\!u$ loss of primary beam energy
- a beam fluence of 10⁶

Reduced yield of rhenium (Z = 75) isotopes calculated for fusion-fission fragments produced in reaction of the ²³⁸U ions with a Be target

• Complicated secondary bam productions regarding to charge states (beam and fragments)

OT et al., Eur. Phys. J. A (2018) 54: 66



²³⁸U (80MeV/u) + Be @ A1900+S800BL

E.Kwan, O.T. et al., will be published soon

A,Z,q – separation in the Z=92 region

- Long ToF-base (45.5m)
- Non-cooled PIN-diodes (50x50 mm² 0.5mm)

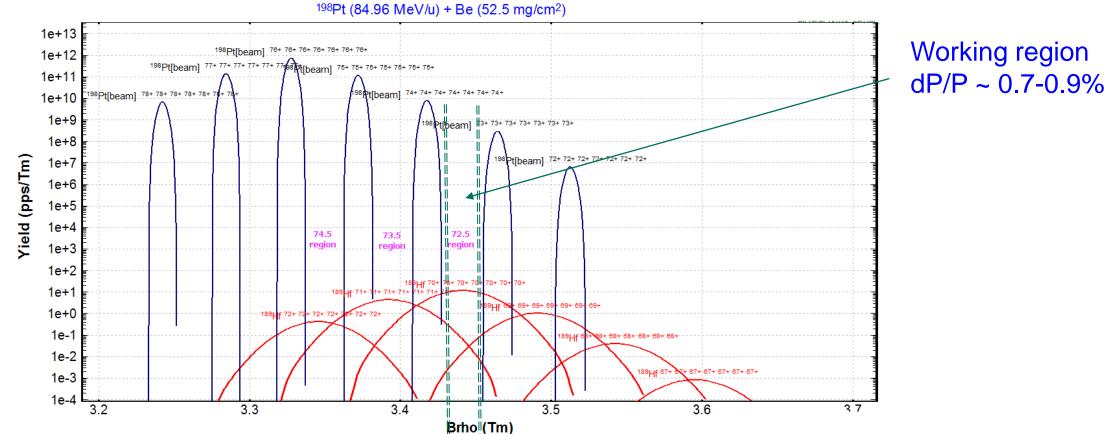
O.B.Tarasov@ExoticNucleusWorkshop.Crete; 22-23.08.19

2019 NSCL

NSCL E15130

"Search for isotopes and isomers in the Hf region"

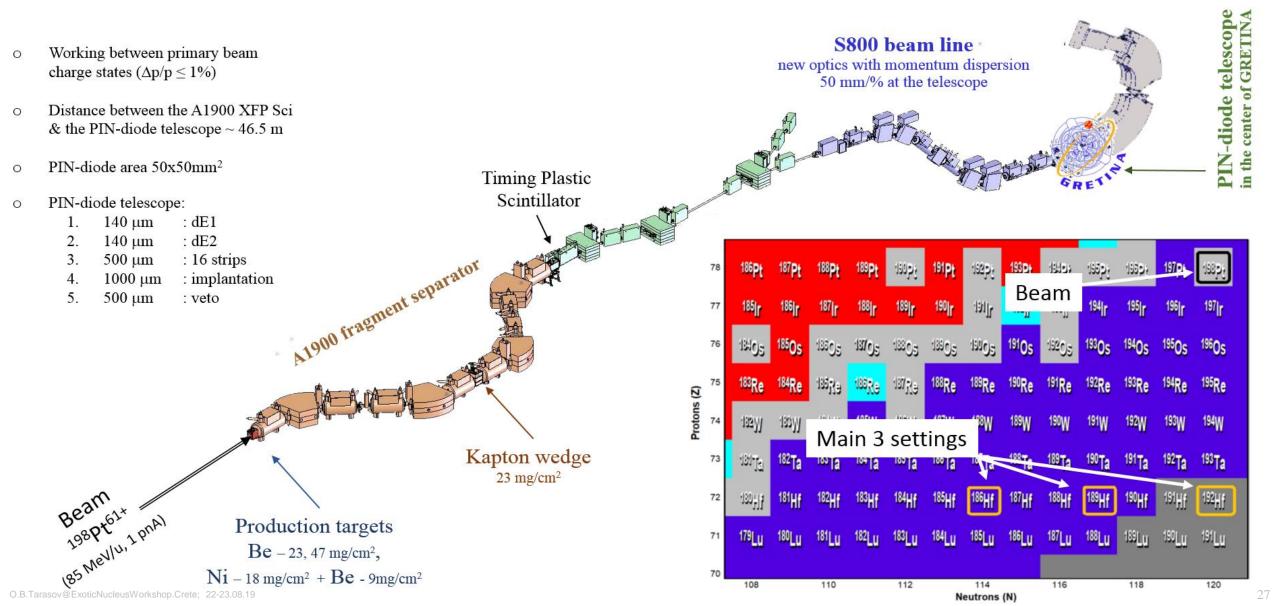
(UML)


(MSU)

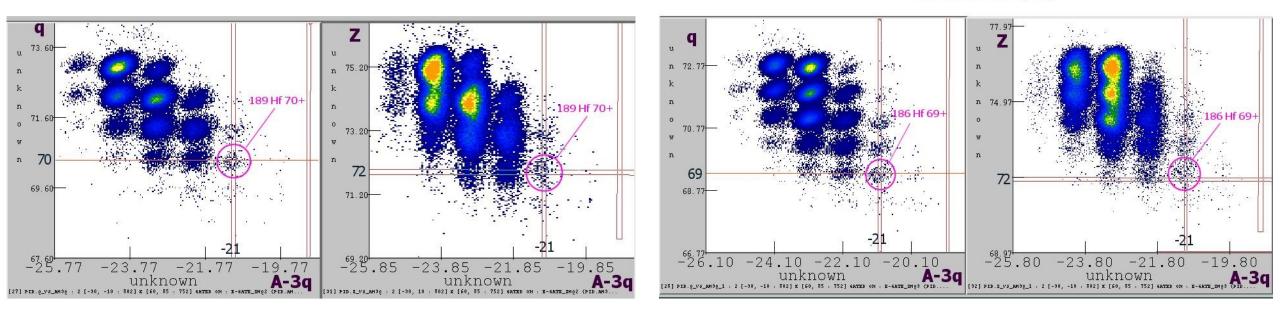
(UML)

Pls:

- Partha Chowdhury
- Oleg Tarasov
- Andrew Rogers


- Working between primary beam charge states
- Try to avoid in-flight detectors (charge state production)
- No in-flight detectors in Dispersive plane ("wedge" property)
- New "Separator + *Long* Spectrometer" method

"Search for isotopes and isomers in the Hf region"



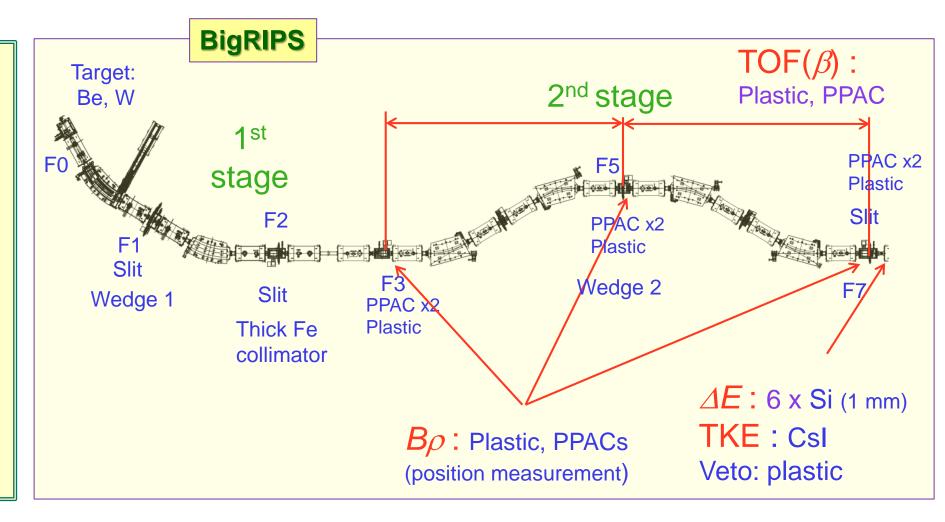
Experiment #e15130; July 2019 @ NSCL/MSU ¹⁹⁸Pt (85 MeV/u) + Be (47 mg/cm²) -> Wedge -> ¹⁸⁹Hf⁷⁰⁺

selection Z-q=2

selection Z-q=3

- New isotopes have been observed in the ¹⁹²Hf⁷⁰⁺ settings
- Similar experiment (High-Z beam, working between charge states, dispersion at the FP detectors) will be held in RIKEN (11/2019)
- DERICA capabilities are very potential to compete in this region for new isotopes in PF and MNT reactions
- DERICA fragment-separator layout should prevent THIS experimental technique

Production of super neutron-rich isotopes


⁷⁰Zn beam @ 345 MeV/u <l> = 200 pnA (1.25e12pps)

PID by TOF-B ρ - Δ E-TKE method: \rightarrow Z, A/q, Q

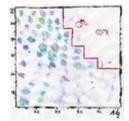
- New isotopes search
- Production cross section and momentum distribution measurement
- Secondary reactions yield measurement as target thickness

New isomers search

O.B.Tarasov@ExoticNucleusWorkshop.Crete; 22-23.08.19

Total Experiment : 7 days

New isotopes search : 100.9 h (4.2 days)



Final results

Editors' Suggestion

Discovery of $^{60}\mathrm{Ca}$ and Implications For the Stability of $^{70}\mathrm{Ca}$

O. B. Tarasov *et al.* Phys. Rev. Lett. **121**, 022501 (2018) – Published 11 July 2018

Eight newly discovered neutron-rich nuclei act as key discriminators between different mass models.

- Cross sections are still under analysis
- Production of ⁶²Sc is -9p, +1n
- Pickup is suppressed at these energies
- Two-step reactions through a charge-exchange channel?

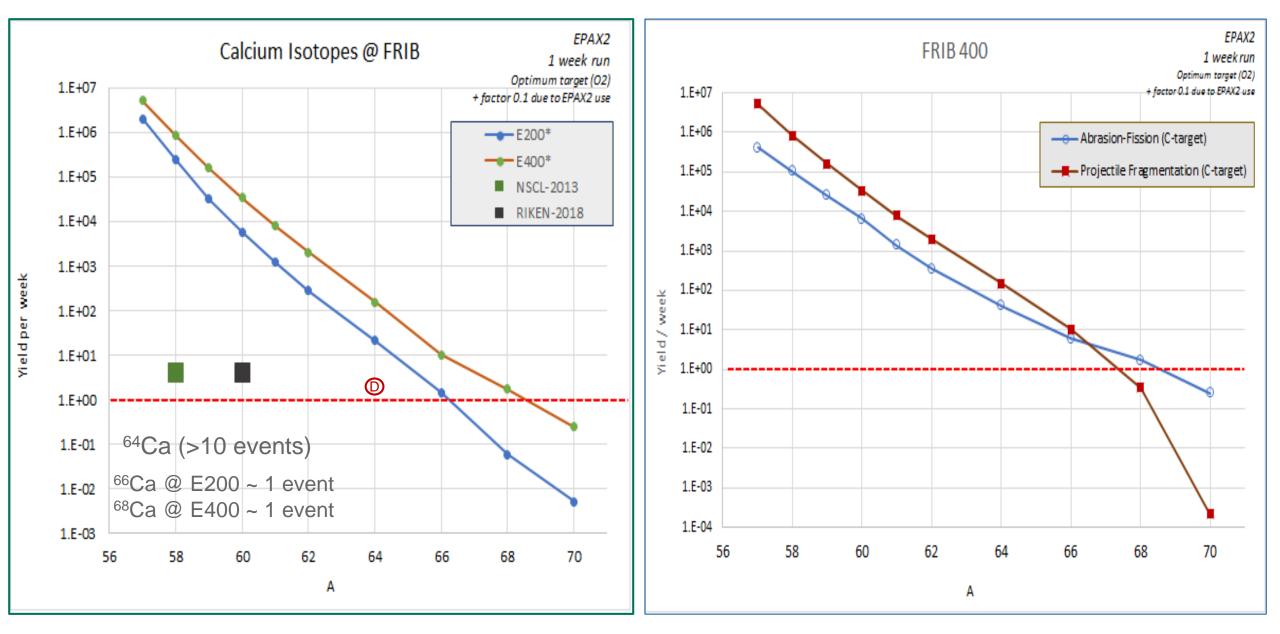
 70 Zn(p,n) 70 Cu \rightarrow 70 Cu(-8p) 62 Sc or 70 Zn(-8p) 62 Ti \rightarrow 62 Ti (p,n) 62 Sc

Charge-exchange reactions become important mechanism for RI production

8 new isotopes including ⁶⁰Ca (+⁵⁹K)

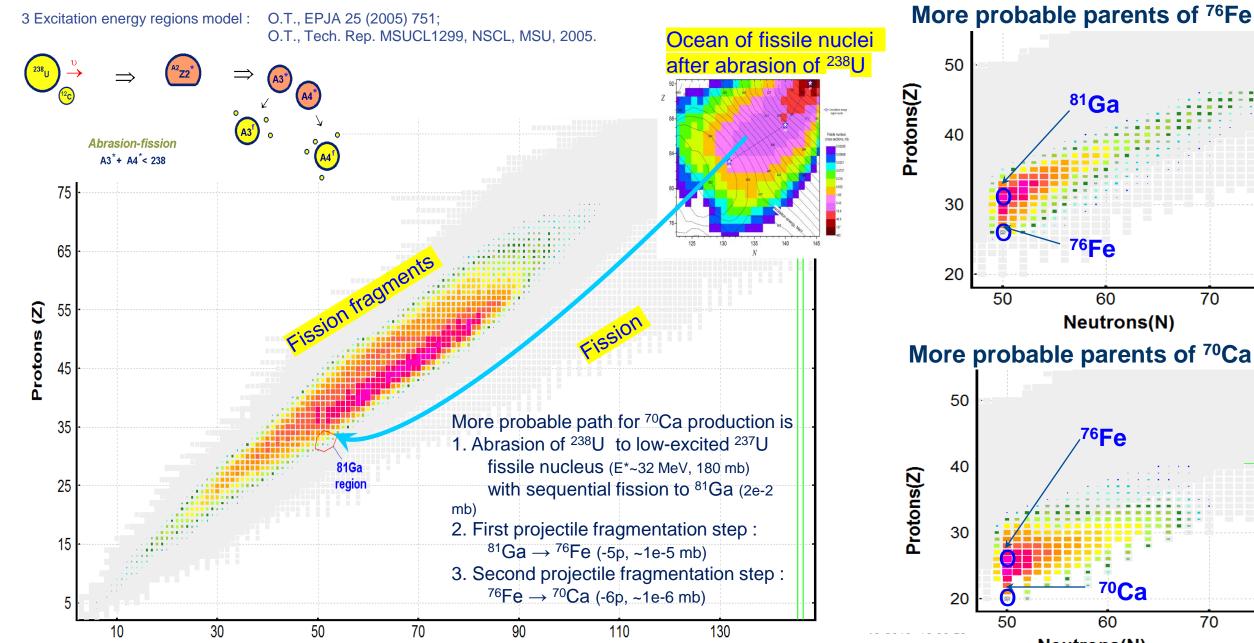
Z	52 ₁₁	53 _{TI}	54 ₁₁	55 TJ	⁵⁶ Ti	57TI	58TJ	⁵⁹ Ti	⁶⁰ TI	61 TI	62 ₁₁	⁶³ Tī	⁶⁴ TI
	51 S C	52 8 0	53 SC	54 S C	55 8 0	⁵⁶ Sc	57 8 0	⁵⁸ Sc	⁵⁹ Sc	⁶⁰ Sc	61 SC	62 8c	3899c
20	50Ca	51Ca	⁵² Ca	⁵³ Ca	⁵⁴ Ca	55Ca	⁵⁶ Ca	57Ca	58Ca	⁵⁹ Ca	⁶⁰ Ca		92C3
	49K	⁵⁰ K	51K	52K	53K	54K	⁵⁵ K	⁵⁶ K	57K		⁵⁹ K		яX
18	⁴⁸ Ar	⁴⁹ Ar	⁵⁰ Ar	⁵¹ Ar	⁵² Ar	⁵³ Ar	⁵⁴ Ar		3 <u>3</u> ∬1		3 <u>3∛</u> 1		
	47CI	48C	49 C]	50Cl	51CI	52C	ର୍ଥ୍ୟମ		ગ્રદી				
16	46 S	47 S	48 S	49 S	ಉ್ಯ								
	45 p	46 p	47p										
14	⁴⁴ Si	423]	403]										
	30		32		34		36		38		40		Ň

Green color : observed at the first time Red color : particularly interesting isotopes


Production of new calcium isotope : past, current and future

^A Ca	year	N of stages	N of wedges	Reaction	Beam	Energy, MeV/u	Intensity, pps	Be-target, thick g/cm2	I*t, pps* atons/cm2	Lab	Reference
54-56	1997	1	0	AF	²³⁸ U	1000	2.00E+07	1.00	1E+30	GSI	M.Bernas et.al., PLB415 (1997)
57,58	2009	2	1	PF	⁷⁶ Ge	130	1.25E+11	0.63	5E+33	MSU	OT et al., PRL 102, 142501 (2009)
57,58*	2013	2	1	PF	⁸² Se	140	2.20E+11	0.70	1E+34	MSU	OT et al., PRC87, 054610(241KW
											E 1 1 4 4
59,60	2018	2	2	PF (+SR?)	⁷⁰ Zn	345	1.25E+12	2.80	2E+35	RIKEN	OT et al., PRL 122, 02250 52 KW
					76 87						EO LAM
62	>2020	3	2	PF+SR	⁷⁶ Ge, ⁸² Se?				>1e36		50 kW
64	>2023	3	2	PF+SR	⁷⁶ Ge, ⁸² Se?				>1e37		400 kW
66	>2026	≥ 3	≥ 2	AF or PF +SR	⁷⁶ Ge, ⁸² Se, ²³⁸ U?	•					
68	>2030	≥ 3	≥ 2	AF+2SR	²³⁸ U						
70	>2036	≥ 3	≥ 2	AF+3SR??	²³⁸ U		liqu	uid metal targ	get?		
		on-Fission						FYI:			
	-	tile Fragmen						FRIB	1.1E+37	400 KW v	-
	SR: Secon	dary (MultiSt	ep reaction	15)				FRIB-400	4.00E+37	800 KW V	s 3.5g/cm2

LI ↔ MICHIGAN STATE UNIVERSITY


Calcium isotopes production at FRIB

6

LISE⁺⁺ Abrasion-Fission model; Projectile-Fragmentation steps

Neutrons (N)

More probable parents of ⁷⁶Fe

.⁸¹Ga

76**F**e

60

⁷⁶Fe

⁷⁰Ca

60

Neutrons(N)

70 Neutrons(N)

70


	44										
₩	₃se	U	Ν	I	۷	E	R	s	١	Т	Y

	Energy, MeV/u	Carbon targe	et thickness, mm
²³⁸ U	412->0	12.85	
	412->200	8.37	
	412->100	11.2	
²³⁸ U(412 Me	V/u)-> ²³⁷ U fission ->	⁸¹ Ga (peaks	370 & 450 MeV/u)
⁸¹ Ga	450	41.3	
⁷⁶ Fe	450	55	
⁷⁰ Ca	450	86	
Optimum ta	arget thickness to p	roduce ⁷⁰ Ca	is 43 mm
	final ⁷⁰ Ca energy pea	ak ~200 MeV	/u, Brho~ 7.7Tm
	Energy deposition in	the target 80	00 kW

Carbon target in mm

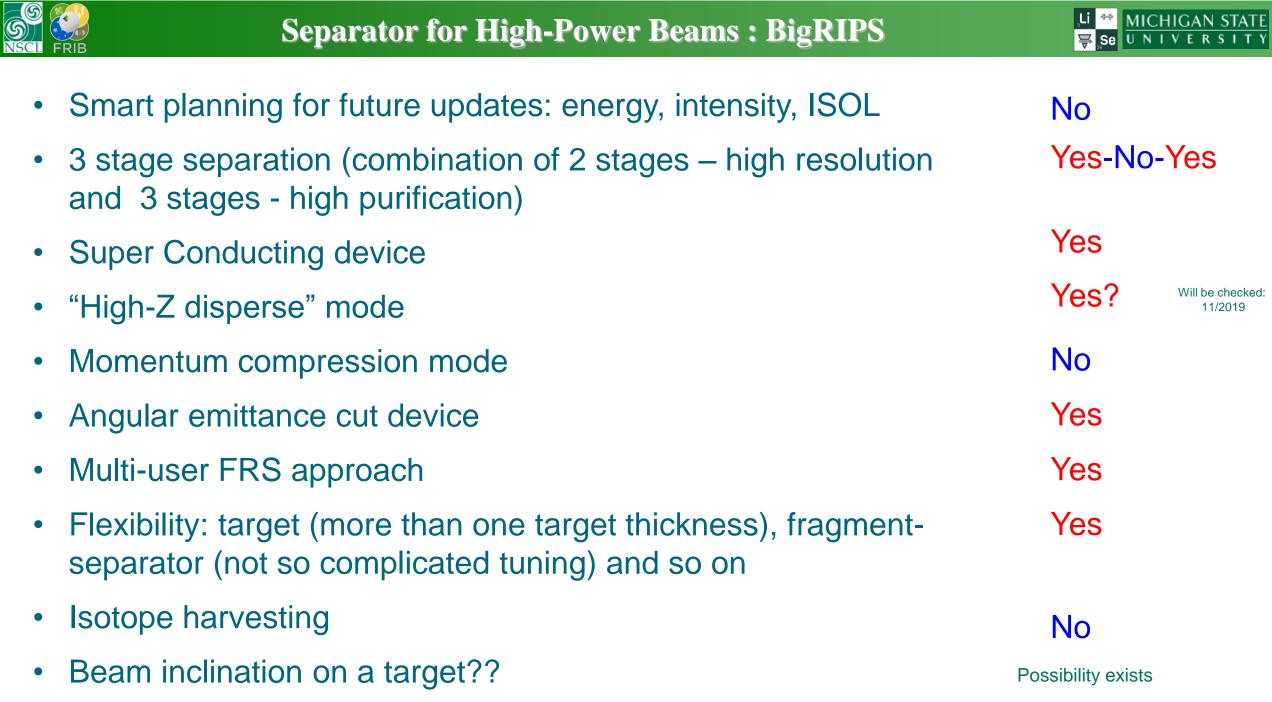
⁷⁰Ca @ E400 & Liquid Li target ~ 1 event !!

	Beam			Target		
	AZ	Energy	Intensity	thickness		settings
			1e11		1e22	
		MeV/u	pps	mm	atoms/cm2	
FRIB E400	82Se	520	1170	C-65	74	70Ca
FRIB E400	82Se	520	1170	Li-298	137	70Ca
FRIB E400	238U	412	509	C-43	60	70Ca
FRIB E400	238U	412	509	Li-245	113	70Ca

0.3 m target thickness from the realm of fantasy...

High-Power Beams Separator Requirements

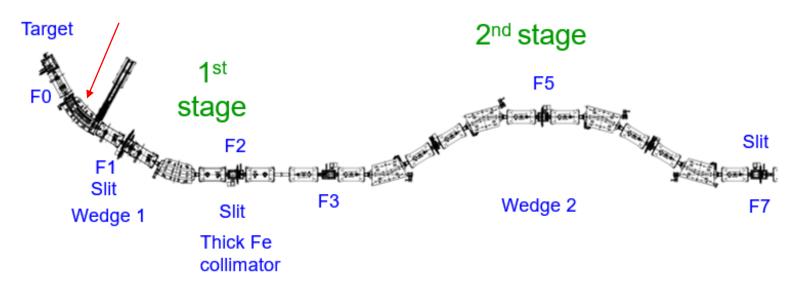
(Moved to the FRS presentation)



- Smart planning for future updates: energy, intensity, ISOL
- 3 stage separation (combination of 2 stages high resolution and 3 stages - high purification)
- Super Conducting device, Compact
- "High-Z disperse" mode
- Momentum compression mode
- Angular emittance cut device
- Multi-user FRS approach
- Isotope harvesting
- Flexibility: target (more than one target thickness), fragmentseparator (not so complicated tuning) and so on
- Beam inclination on a target??

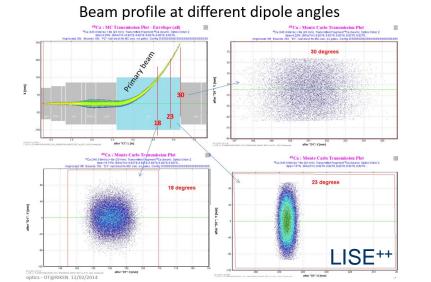
What we have to know working at the new generation facilities?

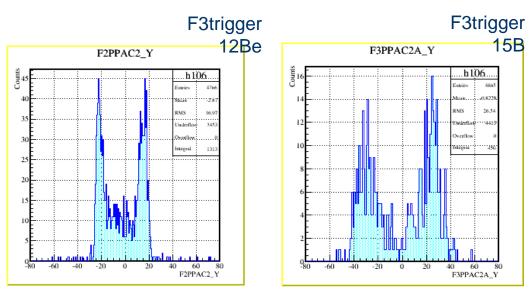
Some non-prevented difficulties...



new generation facility

- Reactions in the 1st dipole beam-dump
- High-order aberrations at the wedge selection plane
- [⁷⁰Zn] Huge background of light particles @ F3 (first detectors of the 2nd stage)
- [⁷⁰Zn] Huge background of light particles @ F7 Ge-detectors
- No momentum compression foresight
- Beam-dump is far from a focus plane
- 1st SC segment: NMR-probe
- High-Z Abrasion-Fission production cross sections
- Angular emittance cut device
- Quality optic reconstruction
- Very precise RIB tagging by A/q (e.g. ¹³²Sn⁵⁰⁺ beam)
- Advance diagnostic and fast in-flight detectors

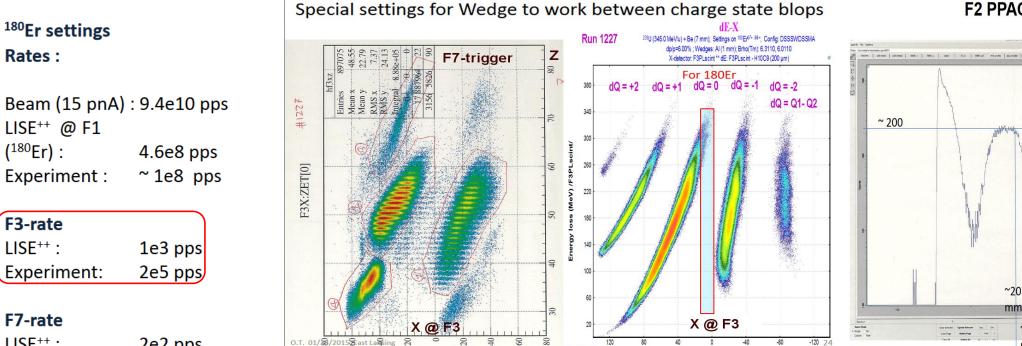

V-shape internal beam-dump



- ⁴⁸Ca beam for ³³F,³⁶Ne,³⁹Na isotopes search
- Large unexpected yield of A/q=3 isotopes using a thick wedge
- Two peaks vertical distribution at F2 & F3
- Distance between peaks depends from fragment Z

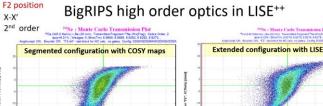
Reasons

- Reactions in the dipole beam dump
- Lightest particles passed slits
- Troubleshoot
 Thick Fe (~0.5m) collimator @ F2

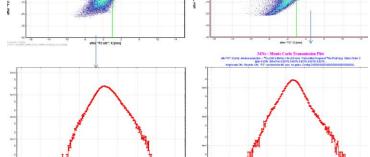

High-order aberrations at the wedge selection plane

ruw 1157

FZPPAC


F2 trippen

LISE++ : 2e2 pps **Experiment:** 5e3 pps


Background

- a. Reactions in wedge?
- b. Primary beams?
- c. Bad first order Optics?
- d. High order optics contribution?
- e. Energy straggling?
- f. Coulomb scattering?

12-05-2014 15:45:30

V nasition from

Not 1st order gaussian tails...

~11

mm

Exponent tails!

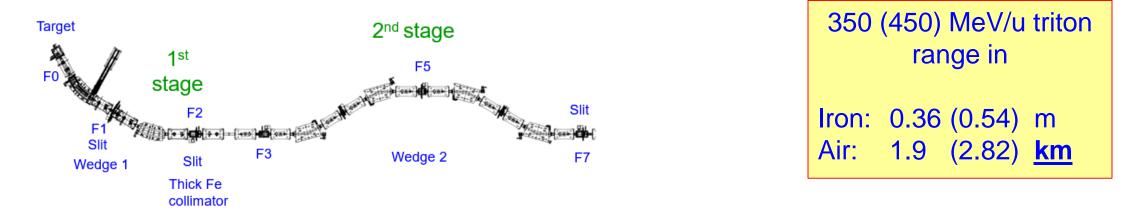
F7-rate

Rates :

(¹⁸⁰Er):

F3-rate LISE++ :

F2 PPAC – F2-trigger


slits

• [⁷⁰Zn experiment] Huge background of light particles @ F3 (first detectors of the 2nd stage)

With thick Fe collimator @ F2 & Fast F3 detectors (10⁵)

It's necessary to use 3-stage separation technique. Detectors should me removed from F3 & F5

 [⁷⁰Zn experiment] Huge background of light particles @ F7 Ge-detectors But Rate @ the F7 telescope was < 100 cps

It's necessary to use the 3-stage separation technique, or construct a wall to get closed from light particles produced at the 1st stage

MICHIGAN STAT

Momentum compression foresight

⁴⁸Ca : MC Transmission Plot - Envelope (only passed) cut here arge reserve 100 60 [m m -100 **Regular BigRIPS optics** Length [m] -180 20 50 60 dP/P [%] 6 50 11% Length [m]

40

30

50

60

70

Momentum compression is accomplished by design of a fragment separator system that has the appropriate momentum dispersion provided by the dipoles and by properly shaping the energy degrader.

L. Bandura et al. / Nuclear Instruments and Methods in Physics Research A 645 (2011) 182–186

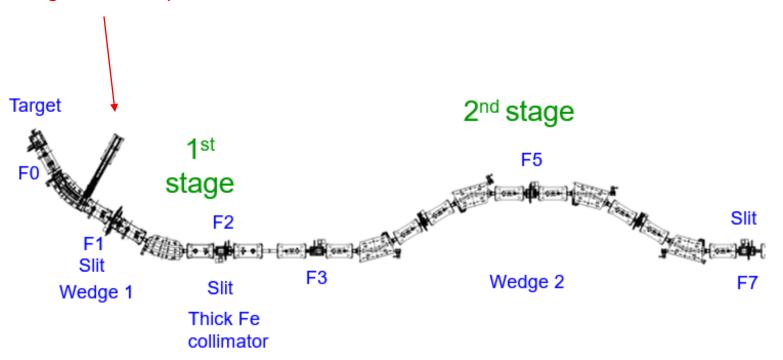
Attempt to find solution for momentum compression optics using LISE⁺⁺ compression factor equal to 5/3.

Total transmission results are shown in figure below

regular compressed v4.	F0-F2 63.40% 49.80%	F2-F7 50% 83%	total 32% 41%
	F0-F1		
regular	68.10%		
compressed v4.	64.30%		

It means total gain in transmission with compressed optics v.4 (compression factor is equal to 5/3) is equal to 31%.

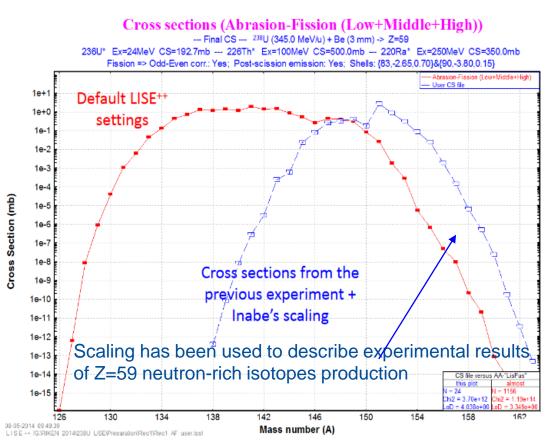
As you can see mainly the transmission loss for compressed optics has place in F1-F2 segment (probably due to large F0-F1 angular magnification).

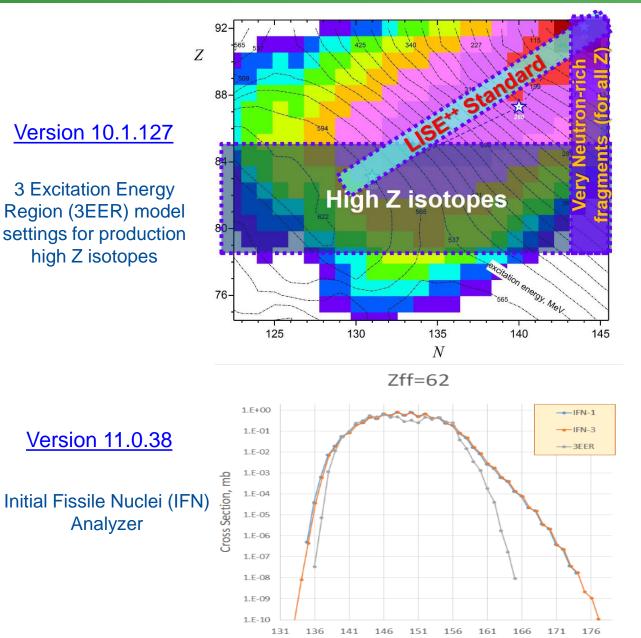

For compressed optics version 3 with the compression factor equal to 2 the transmission gain was obtained even **64%** (!!!), but the first quad was overloaded.

U ↔ MICHIGAN STATE Se university

Moving beam-dump

Serious complications to work between primary high-Z beam charge states


- Global mat	rix					
-1.54893	2.27459	0	0	0	-10.37375	[mm]
-0.24995	-0.27855	0	0	0	-5.00012	[mrad]
0	0	-3.77917	0.50887	0	0	[mm]
0	0	-0.90737	-0.14243	0	0	[mrad]
-0.5152	1.42628	0	0	1	-1.416	[mm]
0	0	0	0	0	1	[%]
/[mm]	/[mrad]	/[mm]	/[mrad]	/[mm]	/[%]	


High-Z Abrasion-Fission production cross sections

,Li ↔ MICHIGAN STATE Se UNIVERSITY

Development and improvement of LISE⁺⁺ reactions models

Cross sections Z=59

Aff

- Optimum energy for RIB production has been discussed
- Results of Charge state distributions, momentum and angular transmission, target thickness, secondary reaction factor analysis as function of primary beam energy has been shown
- DERICA fission fragment transmission and yields of Calcium and Tin isotopes were done. It looks like very potential, and exceeding by two order of magnitude an operating RIB facility
- 100 MeV/u ²³⁸U high-power (700 kW) beam makes enormous difficulties for target and beamdump construction
- Physics with stopped RIBs in 70-100 MeV/u is multifarious and perspective
- Production of new Calcium isotope is huge challenge in future (> 2036)
- Experience of new-generation facilities should be considered
- From DERICA FRS presentation: smart planning for future updates (energy, intensity, ISOL), 3 stage separation, Super Conducting device, "High-Z disperse" mode, momentum compression mode, angular emittance cut device, multi-user FRS approach