

- The program LISE⁺⁺ is designed to predict the intensity and purity of rare isotope beams (RIB) produced by In-flight separators
- The program is constantly expanding and evolving from the feedback of its users around the world
- Many "satellite" tools have been incorporated into the LISE⁺⁺ framework
- It can be freely downloaded from the following internet addresses: <u>http://lise.nscl.msu.edu</u>

- predict the fragment separator settings necessary to obtain a specific RIB
- predict the intensity and purity of the chosen RIB
- simulate identification plots for on-line comparison
- provide a highly user-friendly graphical environment

"wedge" selection

Fragment Separator Construction

A1900

- with different sections called "blocks" (magnetic and electric multipoles, solenoid, velocity filter, RF deflector and buncher, material in beam, drift, rotation element, and others).
- a <u>user-friendly interface</u> that helps to seamlessly construct a fragment separator from the different blocks.

Spectromet	er design				×	to belt	1 tay	
Block	Given Name	Z-Q Length,m	Enable	▲ Insert Mode	- Insert block	"iole"		
🔍 🔷 < Quad>	Q041-3TB	0.812	+	G halan	Materiala	tic Olt		
d 🔲 drift	z042	0.136	+	v• berore	Materials	onet	*	
Q 🔷 < Quad>	Q043-3TC	0.43	+	C after	W Vedge T Target	Mass		all
d 🔲 drift	z044	0.563	+					ha
Dipole = Dipole	e D2	0 2.43	+	Move element	Matenal(Detector)		- -	ЭC
d 🔲 drift	z052	0.552	+	A 11-	A Faraday cup	to focu		sfe
Q 🔷 <quad></quad>	Q053-4TA	0.43	+			pole (10	-+	in:
d 🔲 drift	z054	0.17	+	🤳 Down		quadrup		ല്ല
Q 🔷 <quad></quad>	Q055-4TB	0.732	+		- Optical	I DEVIC QL	+	
d 🔲 drift	z056	0.176	+			Magn. Detect		
Q 🔷 <quad></quad>	Q057-4TC	0.526	+	🥵 Edit	dispersive non-dispersive	Scior		
d 🔲 drift	z058	0.658	+	X Delete			<u>王</u>	Ф
	Image2(059)	0	+					Ū.
Wedge	Wedge		+		Wien velocity filter R Beam Rotation	Slits (t	- Hilt	- -
	z060	0.658	+	🗸 ок	Enderstatio diada		Att	μ
V (Quad)	Q062-5TA	0.526	+	2 Halo				ea
	2063	0.176	+	3 Help	G 🔣 Gas-filled separator L 🖶 Solenoid			q
	QU64-518	0.732	+	-			手	g
	zuna	1117	+					80
Enable		Dispersive (M-dipole)		Number of	special			တ
LINDUC	I			Blocks	dispersive RF-based [no beam dinamics changes]			
Let call auto	matically 🗖	Block Length [m]	0.0001	82	K RF separator			
Block name	= tuning	this block [m]	0	Length (m)				
Charge State	(Z-Q) = 0	Sequence number	3	35.821	RF buncher		Configuration: A1900 S8	300BL
	,						(2nd order) 164 bloc	ks

Production Mechanism			×	
		238 U (1	163.0 MeV/u) + C → ⁷⁸ Ni	· ·
/ Reactions // Energy Loss	s, Straggling \/ Char	ge states ү Databases: Masses, Is	omers \	•
	- Reactions ———			
			additionally calculate yields for the next reactions	
\downarrow	Settings	O Projectile Fragmentation		
	Settings	O Fusion> Residual		
\downarrow	Settings	O Fusion> Fission		
	Settings	O Coulomb fission		
	Settings	Abrasion-Fission	×	
0 0		○ Two Body Reactions		
AD735101-F155101 A3*+ A4*< 238		O ISOL mode		
Make default		✓ ок	X Cancel ? Help	

- Not only using classical reaction mechanism models, but actively developing fast and accurate in-house models of rare isotope production
- Includes secondary reactions in target
- Includes fragment production in materials (wedges, detectors)

O.B.Tarasov	Analysis of momentum distributions of projectile fragmentation products	NPA 734 (2004) 536-540
O.B.Tarasov, D.Bazin	Development of the program LISE: application to fusion-evaporation	NIM B204 (2003) 174-178
O.B.Tarasov, A.C.C.Villari	Fusion-fission is a new reaction mechanism to produce exotic radioactive beams	NIM B 266 (2008) 4670-4673
O.B.Tarasov	LISE ⁺⁺ development: application to low-energy fission of projectiles at realtivistic energies	ENAM2004: EPJ A25 (2005) 751
O.B.Tarasov	LISE** development: Abrasion-Fission	Preprint NSCL MSU, MSUCL- 1300, 09.2005

Application : Energy region and Facilities

Besides analytical calculation of the transmission and yields of fragments

Monte Carlo simulation of fragment transmission,
 Monte Carlo simulation of fission fragment kinematics,
 Ion Optics calculation and Optimization ,
 LISE for Excel (MS Windows, Mac OS - download)

LISE⁺⁺ calculators:

- "Physical Calculator",
- "Relativistic Kinematics Calculator",
- "Evaporation Calculator",
- "Radiation Residue Calculator" (new),
- "Ion Mass calculator" (new),
- "Matrix calculator"
- "Initial Fissile Nuclei analyzer" (new)

Implemented codes:

- u «PACE4» (fusion-evaporation code),
- «MOTER» (raytracing-type program for magnetic optic system design)
- «ETACHA4» (charge-state distribution code) (new),
- Global» (charge-state distribution code),
- «Charge» (charge-state distribution code),
- Spectroscopic Calculator" (of J.Kantele»)

LISE⁺⁺ Utilities:

- Stripper Foil Lifetime Utility,
- Brho Analyzer,
- Twinsol (solenoid) utility,
- Units Converter,
- ISOL Catcher,
- Decay Analysis (includes Proton, Alpha, Cluster, Sp.Fission half-lives calculation),
- Reaction Utilities (Characteristics, Converters, Plots),
- «BI»- the automatized search of two-dimensional peaks in spectra

Databases:

- Nuclide and Isomeric State databases with utilities,
- Large Set of Calculated Mass Tables (includes FRIB mass tables),
- Ionization Energy database (used with the Ion Mass calculator),
- Decay Branching Ratio database (used with the Radiation Residue calculator)

PORTING: 03/20 - 11/21

COVID19: No bad without good...

LISE⁺⁺ transportation \rightarrow LISE ⁺⁺_{cute}

- The LISE⁺⁺ code (v.6-13) was developing at Borland C++ 5.02 IDE (integrating development environment), which is not compatible with the next Borland (Builder, Embarcadero C++) generations
- The LISE⁺⁺ software suite was recently ported to Qt-framework in order to
- Aid in sustainability of the code
- Support modern compilers and computing methods:
 - ✓ 64-bit operation
 - cross-platform compatibility (Windows, Mac, and Linux versions)
 - ✓ the ability to take advantage of computational progress (for example parallel computing methods)
 - \checkmark integration with control systems

🖶 1 | S F + + Calculations Utilities Experimental Setting 🖸 Piş 🗶 | 🔐 🚧 🚧 🙀 🙀 🖊 | 🖽 🖊 | 🏷 🥵 🔬 238 [92+ Projectile 5 kW 163 MeV/u 78 Ni 28+.. 28+ Fragment EERs: 236 U(34) 230 AC(144) 220 At(394) T 🕘 Target 12 C 1.2 mm ST Stripper S PS_I slits slits -80 H +50 WT PS_wdg Al 1.9 mm D PS1C Bo=5.0689 Tm D PS1D Bo=51 Block selection distributions ST PS_FP_slit slits Angular distributions -5 H +5 Horizontal X space distributions R_ RA-90 Angle= ertical Y space distribution D_ C_D1 Bo= Momentum distribution S 🚺 DB2 slits slits Energy distribution -12 H +80 Wedge 1 Total Kinetic Energy distributions Electrostatic rigidity distributions Beam and Setting fragment charge state distributions FRIB 202 15.25.4 Debug distributions Monte Carlo transmission calculation Abrasion, Fission (Low E)

✓ Z-q=0,0,0,0,0,0,0,0,0

Ncalc=0

Sum=0 000e+0

Show Disabled blocks

LISE⁺⁺ version (currently 16.7), created using the Qt framework, is named LISE_{cute} to indicate a new generation different from the previous Borland-based versions.

DG=2.45mm/%

NP=32

R=0x70

New Feature: 3-D Monte Carlo Transmission Plots

3-D Monte Carlo Envelope Plots

LISE++ development chart

Next Slides

Fig. A schematic diagram of the LISE⁺⁺ development plans.

M.P. Kuchera et al./Nuclear Instruments and Methods in Physics Research B 376 (2016) 168–170

ETACHA4 porting and development: evolution plots and corrections

_ X

RECapture

Ionization

3d n=4

We are very grateful to Dr. Toshiyuki Sumikama (RIKEN) for the fast and quality analysis of bug locations during the porting process

_

ntegration mode

RKF45

Euler's method

fast, for high E

do not use

default

beta

ODE ISBN: 0716704617

Steps & Numerical uncertainties

Relative =

Intermediate output of

cross sections

Debug mode

Minimum step =

Maximum step =

Show Results

Event Logs

✓ Plots

T: 0.800 > k: 2.00 2s: 1.91 2p: 5.76 m: 1.12 n: 0.20 Ee: 11.00

Absolute = 1.00e-12

1.00e-5

1

200

µg/cn

ug/cn

*

(ordinary differential equation solver)

(Runge-Kutta-Fehlberg ODE solver)

1.0e-02

1.0e-03

1.0e-04

1s 2s 2p 3s 3p

13

GEMINI++: GUI application

The Gemini++ code was implemented to the LISE⁺⁺ package after porting to a GUI application using the Qt graphics framework.

The code was updated to use the AME2016 database and to plot calculation results with the LISE⁺⁺ code.

http://lise.nscl.msu.edu/gemini.html

😋 Gemini								_	×
File About									
Execute	🚔 Oper	n	Save						
Compound Nucle	us Decay Fusion r	reaction							
Projectile			- Target			Comp	ound ——		_
A= 16	A= 1	2 N =	6	A= [28	N = 14			
Z = 8		Z = 6	5	¹² C	Z =	14	²⁸ Si		
	ME (MeV) = -4.737				0		ME (MeV) = -21.4928		
- Beam Energy -			- Spin			- Local	Local settings Diffuseness of fusion spin distribution (ħ)		
Lab Energ	$Q_{CN} = 16.$	7558	Input max spin 23 Max spin from Bass Model			Diffuse			
(MeV) 160	E _{CM} = 68.	5714 3272				Number of 500]
Heada	Even	aratian made					INE omioo	ion	
- Masses		= widths (& K	E) calculated	from Weiss	conf S&I fro	omHE	- IMF emiss	1011	
Traditional Gemini									
AME2016 database 2 = Switches bewteen options 0 and 1 depending enhanced IMF emission								sion	
		of the ratio (of rotational t	o thermal en	ergy				
		EVAD	Cross Se	ctions (C	EMINI)	Mode 2			
	E	citation ener	gy 143.0 Me	/; Max.comp	ound nucleus	spin 40.0 hb	ar		
		Compour	nd nucleus for	mation cross	section: 1.00	0e+02 mb			
70.6									
70.2	Illari		Ubu	445.0	1150	4405.41	40.0	100.00	
69.8	¹⁴³ Y D	¹⁴⁴ Yb	¹⁴⁵ Yb	¹⁴⁶ Yb	147Yb	¹⁴⁸ Yb	¹⁴⁹ Yb	¹⁹⁰ Y D	
	1.7e+0 mb	4.8e+0 mb	2.0e+1 mb	1.8e+1 mb	2.0e+1 mb	1.4e+1 mb	5.8e+0 mb	1.2e+0 mb	
(Z) 69.4				445-	446-	447-	440-		
69 oton			¹⁴⁴ l m	¹⁴⁵ l m	¹⁴⁰ I m	¹⁴⁷ I m	¹⁴ ° m		
6 8.6			1.5e+0 mb	1.7e+0 mb	6.4e+0 mb	1.4e+0 mb	5.8e-1 mb	2e+1 2e+1 1e+1	
68.2	141 5 r	142Er	143 E.r.	144 E r		146 E r		98+0 7e+0 5e+0 4e+0	
67.8	0.60.1 mb	300.1 mh	17 <u>0</u> ∔0 mb	5 80.1 mh		3 00.1 mh		2e+0 2e+0 1e+0	
67.4	3.00-11110	J.3C-1 1110	1.10101110	J.UC-1111		J.3C-1 1110		9e-1 7e-1 5e-1	
67								3e-1 2e-1	
	72 73	74	75 N	76 leutrons (77 N)	78	79	80	

🕃 Gem	ini								-	
💾 Sav	e E	Print								
Gemini										
	5	Statisti	cal C)ec	av (Cod	le			
Starting Conditions										
Z N A ^A EI										
	Proj	iectile		8	8	16	¹⁶ (C		
	Targ	get		6	6	12	12 (C		
	Con	npound n	ucleus	14	14	28	28 5	Si		
Bom	bardin	g energy	(MeV)				16	0.00		
Cen	ter of M	ass energ	y (MeV)				68	.571		
Com	npound	nucleus E	Excitatio	n er	nergy (MeV)	85	.33		
Q-va	lue of r	eaction (N	leV)				16	.756		
Com	npound	nucleus r	ecoil er	ergy	(MeV)	91	.429		
Corr	npound	nucleus r	ecoil ve	locit	ty (cm/	ns)	2.5	512e+00		
Corr	npound	nucleus r	ecoil (β)			8.3	373e-02		
Beam velocity (cm/ns) 4.396e+00							396e+00			
Bear	m veloo	city (β)					1.4	465e-01		
	0	diffusenes	S		2.00	_ fi				
	,	-usion cro	ss secti	on	655.2	7 n	b			
	E	Bass L			21.02	n				
	L	_0			20.85	. "				
		ass cross	section	1	675.8	4 n	מו			
		Excitation	energy		85.33	N 6	lev			
		Shiicai spi	"		21.0	"				
		Fusion	Produ	ict	Sumn	nary				
	Res	sult				Nu	mbe	r		
	Inte	ermediate	Mass	rag	ments		268			
Symmetric Fission							0			
Residual Nuclei					232					
IOIAL 500										
	Vields of Residual Nuclei									
z	Name	Events	Perce	nt	x-sect	ion (mb)	err(mb)		
12	24Mg	11	4.7%		31.07			9.368		
12	23Mg	28	12.1%		79.08			14.95		
12	22Mg	44	19.0%		124.3			18.74		

Implementation of ATIMA1.4 (catima1.5)

Complete agreement with ATIMA14 site results were obtained

ATIMA 1.4 is set as default Energy loss model in version 15

Production Mechanism	×
All Ca (140.0 MeV/u) + Be -> 42 Reactions Energy Loss, Straggling Charge states Databases: Masses, Isomers	S
Prefragment and Evaporation options	
Energy Loss — Energy Loss model 4 - ATIMA 1.4 H.Weick, improved mean charge formula for HI	•
Energy straggling Energy Straggling model 1 - ATIMA 1.2 (LS-theory)	•
Shape Calculation method integration	
Moyal approximation of the Landau distribution interpolation from table	
Angular Straggling	•
Coefficients for GM.'s energy straggling calculations Slope 0.217 (default 0.217) Free member 1.12 (default 1.12)	Help
Make default	? Help

Acknowledgements to Drs. H.Weick and A.Prochazka

ATIMA website: <u>http://web-docs.gsi.de/~weick/atima/</u>

65

- The new utility "Power deposition and rate analysis in blocks"
- The new utility "Beam energy scanning" determines optimal beam energy for current given separator settings
- Shape calculation of two angle wedge to pass neighbors isotopes besides a setting fragment in the case of thick momentum compression degrader
- The LISE package installer on Windows has been signed with the MSU digital certificate, thereby eliminating the "unknown publisher" message
- New LISE⁺⁺ file type \rightarrow FILES LIST (*.liselst) : set of lise files to compile a final configuration
- Account for material lengths in optics
- Angular straggling contribution to ion optics

Please find more details of v.16.3-7 updates on the LISE⁺⁺ site

35

25

15

5

X [mm]

REACTIONs

Initial Fissile Nuclei (IFN) Analyzer

The standard LISE 3EER (excitation energy region) model uses only 3 fissile nuclei to calculate fission fragment cross sections. Fast, but there is a large discrepancy for exotic nuclei production, as it is aimed at obtaining the main fission yield.

- ❑ The new utility, Initial Fissile Nuclei (IFN) Analyzer, calculates the contribution from all possible parent fissile nuclei to the final fission fragment, which allows to calculate
 - fission fragment production cross section,
 - more likely fissile nucleus,
 - fragment velocity in CMS,
 - excitation energy of the initial fission fragment,
 - number of nucleons released to reach the final fission fragment.
- Knowledge of the parent fissile nuclei helps to choose a reaction to maximize production of the isotope of interest, transmission factor

Abrasion-Fission 3EER model

- Fast Analytical model
- Averaging → substitution of more than 1000 fissile nuclei by <u>3</u> nucleus

Initial Fissile Nuclei (IFN) for final Ge-isotopes (Z=32)

IFN-analysis for final Ge-isotopes (Z=32)

O.B.Tarasov @ EMIS22.DAEJEON.KOREA; 04/10/2022

LISE⁺⁺ Abrasion-Ablation : minimization to describe experimental cross sections

Abrasion-Ablation: http://lise.nscl.msu.edu/AA.html

÷÷

₩Se

Cu

Te U N

44

MICHIGAN STAT

LISE++ development chart

- Creation of fast and accurate Abrasion-Fission model based on the IFN Analyzer tables
- Abrasion-Ablation:
 - o Improvement of the fast model for multi-step reactions (implementation of the AA for second step)
 - o Intermediate Dissipation step in the Abrasion-Ablation model
 - Theoretical study of prefragment excitation energy
 - Development and implementation of the new (log-normal) excitation distribution shape after abrasion based on the BeAGLE calculations (in collaboration with the EIC/BNL exotic nuclei group)
- Implementation in LISE⁺⁺ code for transmission and cross section calculations
 - ETACHA4: Low-energy non-equilibrium charge state evolution
 - PACE4: Projection Angular-momentum coupled evaporation
 - o INC: intranuclear cascade model to use at higher energies with light targets
- Systematization of experimental production cross-sections
- Creation of Monte Carlo de-excitation cascade utility to benchmark the analytical LISE⁺⁺ cascade subroutine and to create condition (gating) options
- Investigate charge-exchange and pick-up reactions in RIB production

In the near future:

- The creation of a LISE ⁺⁺_{core} library
 - This library will allow to integrate LISE⁺⁺ calculations within control systems, in order to directly assist the tuning of fragment separators.
 - LISE for Excel-64
- The code parallelization will be undertaken
 - To take advantage of modern computing architecture, parallel computing methods are essential in achieving faster computation. As a first step, the LISE⁺⁺ code parallelization process will be implemented on the Monte Carlo and "Distribution" analytical methods for fragment transmission calculation.
- Block configuration converter
 - This new tool will be built around a new type of block, labeled G (Group), which allows the grouping and ungrouping of E blocks. The tool can be applied to create sector configurations for fast analytical calculations.

The new LISE⁺⁺ feature for converting a series of extended blocks to a single segmented block.

- The program LISE⁺⁺ is designed to predict the intensity and purity of rare isotope beams (RIB) is widely used at heavy ion collision facilities
- The program is constantly expanding and evolving from the feedback of its users around the world
- Fast and accurate models of rare isotope production mechanism are being developed in the LISE⁺⁺ framework
- The LISE⁺⁺ software suite has been transferred to a new graphics framework, Qt, to use with modern compilers, that provides cross-platform functionality, 64-bit operations
- New code capabilities such as parallel computing, and integration with control systems are planned, so the next step to be undertaken will be the creation of a LISE_{core} library. This library will allow the integration of LISE⁺⁺ with control systems for direct assistance in the tuning of fragment separators. These developments are planned to be tested at FRIB in the near feature
- Computational speedup is requested from users at many facilities, and becomes more crucial with the new large-scale nuclear physics facilities under construction, such as FRIB and FAIR, that have keen interest in integrating the LISE⁺⁺ software with their control systems

The LISE⁺⁺ Transportation Team

Members working on the transportation of the LISE⁺⁺ Software Suite to Qt.

D. Bazin	physics & ion optics consulting, benchmarks, adaptation to macOS		
M. Hausmann	physics & ion optics consulting, benchmarks		
M. Kuchera	source porting, development of porting process base	This work was s National Science	supported by the U.S. ce Foundation under
P. Ostroumov	supervision, funding acquisition	Grants No. P 20	HY-1565546, PHY-)12040,
M. Portillo	physics & ion optics consulting, benchmarks	by the U.S. De	and partment of Energy,
B. Sherrill	supervision, funding acquisition	Office of Scient Physics and us	ce, Office of Nuclear sed resources of the
O.B. Tarasov	leading porting process worker	Facility for Rare I which is a DOE	sotope Beams (FRIB), Office of Science User
K.V. Tarasova	source porting, benchmarks	University, un	der Award Number
T. Zhang	process administration, IT consulting, adaptation to Linux	DE-S	0000661

BACKUP

IFN-analysis for final Ge-isotopes (Z=32)

O.B.Tarasov @ EMIS22.DAEJEON.KOREA; 04/10/2022

Cu

++

MICHIGAN STATE

Te UNIVERSI

- Multi-step reactions in thick targets is process then the projectile undergoes a series of successive reactions until the fragment of interest is produced
- For the second and next reactions we assume always a projectile fragmentation mechanism and uses the EPAX parameterization to speed up calculations

LISE⁺⁺ → ⁶⁴Cr is more probable second-step projectile to produce ⁶⁰Ca with a ⁸²Se beam (400 MeV/u) on Be (15 mm). Total Multi-step reaction factor is equal to 10.1

- The study (experimental and theoretical) of the charge-exchange mechanism as a step for rare isotope production
- **(**p,n)
 - A. I. Morales, J. Benlliure et al., PRC84, 011601(R) (2011)
 ²⁰⁸Pb₁₂₆ (<u>1 AGeV</u>) + Be
- (n,p)
 - J. Yasuda, M. Sasano, et al., PRL 121, 132501 (2018)
 ¹³²Sn (<u>200 MeV/u</u>) + H → ^{**}Sb
 - D.Kostyleva, I.Mukha et al., PRL 123, 092502 (2019)
 ³¹Ar (<u>620 MeV/u</u>) + Be → ³¹K

2.6 Mass to charge ratio A/Q

2.5

- The study (experimental and theoretical) of the multi-step reactions:
 - the development of a fast model for multistep reactions
 - the measurement of experimental secondary cross sections
- Important to approach the nucleon drip-lines
 - So, more probable path for ⁷⁰Ca production at FRIB is a three-step process:
 - 1. Abrasion of ²³⁸U to low-excited ²³⁷U (E*~32 MeV) with sequential fission to ⁸¹Ga (2e-2 mb)
 - 2. First projectile fragmentation step : ${}^{81}\text{Ga} \rightarrow {}^{76}\text{Fe} (-5p, \sim 1e-5 \text{ mb})$
 - 3. Second projectile fragmentation step : 76 Fe $\rightarrow ^{70}$ Ca (-6p, ~1e-6 mb)
- MSU-RIKEN collaboration recent experiments with multi-step reactions analysis in process:
 - Production of neutron-rich isotopes around ⁶⁰Ca by projectile fragmentation of a beam of ⁷⁰Zn at 345 MeV/u (O.Tarasov et al., PRL 121 (2018) 022501)
 - Production of very neutron-rich Pd isotopes around N = 82 by projectile fragmentation of a RI beam of ¹³²Sn at 280 MeV/u (H.Suzuki et al.)

Recent "⁶⁰Ca" experiment at RIKEN

O.Tarasov et al., PRL 121 (2018) 022501

- Production of ⁶²Sc is -9p,+1n
- Pickup is suppressed at these energies
- Two-step reactions through a charge-exchange channel?

 $\begin{array}{rl} {}^{70}\text{Zn}(p,n){}^{70}\text{Cu} & \rightarrow {}^{70}\text{Cu}(-8p){}^{62}\text{Sc} \\ & \text{or} \\ {}^{70}\text{Zn}(-8p){}^{62}\text{Ti} & \rightarrow {}^{62}\text{Ti} \ (p,n){}^{62}\text{Sc} \end{array}$

- Cross sections are under analysis
- Charge-exchange reactions become an important mechanism for the Rare Isotopes production

 $^{70}Zn_{40}$ (345 MeV/u) + Be $\rightarrow {}^{62}Sc_{41}$

The study of the target factor in rare isotope yields for energies 50–150 MeV/u

- ⁴⁸Ca(140 MeV/u) + Be,W
 - ⁴⁰Mg, ^{42,43}AI: T. Baumann, et al., Nature 449 (2007) 1022

• ⁴⁴Si:

O.B.Tarasov, et al., PRC75 (2007) 064613

 ¹⁹⁸Pt (85 MeV/u) + Be, NI NCSL/MSU, 2019
 O.Tarasov et al, under analysis

⁴⁸Ca(140 MeV/u)+Be,W

The cross sections for reaction with the tungsten target are larger than those with beryllium by factors that range from approximately 2.5 at A = 36 (Z=14) to about 10 at A = 42, values that become significantly larger than the ratio of the geo-metric reaction cross sections equal to 2.66